arviz.from_numpyro — ArviZ dev documentation (original) (raw)
arviz.from_numpyro(posterior=None, *, prior=None, posterior_predictive=None, predictions=None, constant_data=None, predictions_constant_data=None, log_likelihood=None, index_origin=None, coords=None, dims=None, pred_dims=None, extra_event_dims=None, num_chains=1)[source]#
Convert NumPyro data into an InferenceData object.
If no dims are provided, this will infer batch dim names from NumPyro model plates. For event dim names, such as with the ZeroSumNormal, infer={"event_dims":dim_names}
can be provided in numpyro.sample, i.e.:
equivalent to dims entry, {"gamma": ["groups"]}
gamma = numpyro.sample( "gamma", dist.ZeroSumNormal(1, event_shape=(n_groups,)), infer={"event_dims":["groups"]} )
There is also an additional extra_event_dims
input to cover any edge cases, for instance deterministic sites with event dims (which dont have an infer
argument to provide metadata).
For a usage example read theCreating InferenceData section on from_numpyro
Parameters:
posteriornumpyro.mcmc.MCMC
Fitted MCMC object from NumPyro
prior: dict
Prior samples from a NumPyro model
posterior_predictivedict
Posterior predictive samples for the posterior
predictions: dict
Out of sample predictions
constant_data: dict
Dictionary containing constant data variables mapped to their values.
predictions_constant_data: dict
Constant data used for out-of-sample predictions.
index_originint, optional
Map of dimensions to coordinates
Map variable names to their coordinates. Will be inferred if they are not provided.
pred_dims: dict
Dims for predictions data. Map variable names to their coordinates. Default behavior is to infer dims if this is not provided
num_chains: int
Number of chains used for sampling. Ignored if posterior is present.