torch_geometric.transforms.RandomLinkSplit — pytorch_geometric documentation (original) (raw)

class RandomLinkSplit(num_val: Union[int, float] = 0.1, num_test: Union[int, float] = 0.2, is_undirected: bool = False, key: str = 'edge_label', split_labels: bool = False, add_negative_train_samples: bool = True, neg_sampling_ratio: float = 1.0, disjoint_train_ratio: Union[int, float] = 0.0, edge_types: Optional[Union[Tuple[str, str, str], List[Tuple[str, str, str]]]] = None, rev_edge_types: Optional[Union[Tuple[str, str, str], List[Optional[Tuple[str, str, str]]]]] = None)[source]

Bases: BaseTransform

Performs an edge-level random split into training, validation and test sets of a Data or aHeteroData object (functional name: random_link_split). The split is performed such that the training split does not include edges in validation and test splits; and the validation split does not include edges in the test split.

from torch_geometric.transforms import RandomLinkSplit

transform = RandomLinkSplit(is_undirected=True) train_data, val_data, test_data = transform(data)

Parameters: