>> from lightning.pytorch import Trainer >>> from lightning.pytorch.callbacks import LambdaCallback >>> trainer = Trainer(callbacks=[LambdaCallback(setup=lambda *args: print('setup'))]) """ def __init__( self, setup: Optional[Callable] = None, teardown: Optional[Callable] = None, on_fit_start: Optional[Callable] = None, on_fit_end: Optional[Callable] = None, on_sanity_check_start: Optional[Callable] = None, on_sanity_check_end: Optional[Callable] = None, on_train_batch_start: Optional[Callable] = None, on_train_batch_end: Optional[Callable] = None, on_train_epoch_start: Optional[Callable] = None, on_train_epoch_end: Optional[Callable] = None, on_validation_epoch_start: Optional[Callable] = None, on_validation_epoch_end: Optional[Callable] = None, on_test_epoch_start: Optional[Callable] = None, on_test_epoch_end: Optional[Callable] = None, on_validation_batch_start: Optional[Callable] = None, on_validation_batch_end: Optional[Callable] = None, on_test_batch_start: Optional[Callable] = None, on_test_batch_end: Optional[Callable] = None, on_train_start: Optional[Callable] = None, on_train_end: Optional[Callable] = None, on_validation_start: Optional[Callable] = None, on_validation_end: Optional[Callable] = None, on_test_start: Optional[Callable] = None, on_test_end: Optional[Callable] = None, on_exception: Optional[Callable] = None, on_save_checkpoint: Optional[Callable] = None, on_load_checkpoint: Optional[Callable] = None, on_before_backward: Optional[Callable] = None, on_after_backward: Optional[Callable] = None, on_before_optimizer_step: Optional[Callable] = None, on_before_zero_grad: Optional[Callable] = None, on_predict_start: Optional[Callable] = None, on_predict_end: Optional[Callable] = None, on_predict_batch_start: Optional[Callable] = None, on_predict_batch_end: Optional[Callable] = None, on_predict_epoch_start: Optional[Callable] = None, on_predict_epoch_end: Optional[Callable] = None, ): for k, v in locals().items(): if k == "self": continue if v is not None: setattr(self, k, v)">

lightning.pytorch.callbacks.lambda_function — PyTorch Lightning 2.5.1.post0 documentation (original) (raw)

Source code for lightning.pytorch.callbacks.lambda_function

Copyright The Lightning AI team.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

r""" Lambda Callback ^^^^^^^^^^^^^^^

Create a simple callback on the fly using lambda functions.

"""

from typing import Callable, Optional

from lightning.pytorch.callbacks.callback import Callback

[docs]class LambdaCallback(Callback): r"""Create a simple callback on the fly using lambda functions.

Args:
    **kwargs: hooks supported by :class:`~lightning.pytorch.callbacks.callback.Callback`

Example::

    >>> from lightning.pytorch import Trainer
    >>> from lightning.pytorch.callbacks import LambdaCallback
    >>> trainer = Trainer(callbacks=[LambdaCallback(setup=lambda *args: print('setup'))])

"""

def __init__(
    self,
    setup: Optional[Callable] = None,
    teardown: Optional[Callable] = None,
    on_fit_start: Optional[Callable] = None,
    on_fit_end: Optional[Callable] = None,
    on_sanity_check_start: Optional[Callable] = None,
    on_sanity_check_end: Optional[Callable] = None,
    on_train_batch_start: Optional[Callable] = None,
    on_train_batch_end: Optional[Callable] = None,
    on_train_epoch_start: Optional[Callable] = None,
    on_train_epoch_end: Optional[Callable] = None,
    on_validation_epoch_start: Optional[Callable] = None,
    on_validation_epoch_end: Optional[Callable] = None,
    on_test_epoch_start: Optional[Callable] = None,
    on_test_epoch_end: Optional[Callable] = None,
    on_validation_batch_start: Optional[Callable] = None,
    on_validation_batch_end: Optional[Callable] = None,
    on_test_batch_start: Optional[Callable] = None,
    on_test_batch_end: Optional[Callable] = None,
    on_train_start: Optional[Callable] = None,
    on_train_end: Optional[Callable] = None,
    on_validation_start: Optional[Callable] = None,
    on_validation_end: Optional[Callable] = None,
    on_test_start: Optional[Callable] = None,
    on_test_end: Optional[Callable] = None,
    on_exception: Optional[Callable] = None,
    on_save_checkpoint: Optional[Callable] = None,
    on_load_checkpoint: Optional[Callable] = None,
    on_before_backward: Optional[Callable] = None,
    on_after_backward: Optional[Callable] = None,
    on_before_optimizer_step: Optional[Callable] = None,
    on_before_zero_grad: Optional[Callable] = None,
    on_predict_start: Optional[Callable] = None,
    on_predict_end: Optional[Callable] = None,
    on_predict_batch_start: Optional[Callable] = None,
    on_predict_batch_end: Optional[Callable] = None,
    on_predict_epoch_start: Optional[Callable] = None,
    on_predict_epoch_end: Optional[Callable] = None,
):
    for k, v in locals().items():
        if k == "self":
            continue
        if v is not None:
            setattr(self, k, v)