`_. Install it with pip: .. code-block:: bash pip install rich .. code-block:: python from lightning.pytorch import Trainer from lightning.pytorch.callbacks import RichProgressBar trainer = Trainer(callbacks=RichProgressBar()) Args: refresh_rate: Determines at which rate (in number of batches) the progress bars get updated. Set it to ``0`` to disable the display. leave: Leaves the finished progress bar in the terminal at the end of the epoch. Default: False theme: Contains styles used to stylize the progress bar. console_kwargs: Args for constructing a `Console` Raises: ModuleNotFoundError: If required `rich` package is not installed on the device. Note: PyCharm users will need to enable “emulate terminal” in output console option in run/debug configuration to see styled output. Reference: https://rich.readthedocs.io/en/latest/introduction.html#requirements """ def __init__( self, refresh_rate: int = 1, leave: bool = False, theme: RichProgressBarTheme = RichProgressBarTheme(), console_kwargs: Optional[dict[str, Any]] = None, ) -> None: if not _RICH_AVAILABLE: raise ModuleNotFoundError( "`RichProgressBar` requires `rich` >= 10.2.2. Install it by running `pip install -U rich`." ) super().__init__() self._refresh_rate: int = refresh_rate self._leave: bool = leave self._console: Optional[Console] = None self._console_kwargs = console_kwargs or {} self._enabled: bool = True self.progress: Optional[CustomProgress] = None self.train_progress_bar_id: Optional[TaskID] self.val_sanity_progress_bar_id: Optional[TaskID] = None self.val_progress_bar_id: Optional[TaskID] self.test_progress_bar_id: Optional[TaskID] self.predict_progress_bar_id: Optional[TaskID] self._reset_progress_bar_ids() self._metric_component: Optional[MetricsTextColumn] = None self._progress_stopped: bool = False self.theme = theme @property def refresh_rate(self) -> float: return self._refresh_rate @property def is_enabled(self) -> bool: return self._enabled and self.refresh_rate > 0 @property def is_disabled(self) -> bool: return not self.is_enabled @property def train_progress_bar(self) -> "Task": assert self.progress is not None assert self.train_progress_bar_id is not None return self.progress.tasks[self.train_progress_bar_id] @property def val_sanity_check_bar(self) -> "Task": assert self.progress is not None assert self.val_sanity_progress_bar_id is not None return self.progress.tasks[self.val_sanity_progress_bar_id] @property def val_progress_bar(self) -> "Task": assert self.progress is not None assert self.val_progress_bar_id is not None return self.progress.tasks[self.val_progress_bar_id] @property def test_progress_bar(self) -> "Task": assert self.progress is not None assert self.test_progress_bar_id is not None return self.progress.tasks[self.test_progress_bar_id]">

lightning.pytorch.callbacks.progress.rich_progress — PyTorch Lightning 2.5.1.post0 documentation (original) (raw)

Copyright The Lightning AI team.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

import math from collections.abc import Generator from dataclasses import dataclass from datetime import timedelta from typing import Any, Optional, Union, cast

from lightning_utilities.core.imports import RequirementCache from typing_extensions import override

import lightning.pytorch as pl from lightning.pytorch.callbacks.progress.progress_bar import ProgressBar from lightning.pytorch.utilities.types import STEP_OUTPUT

_RICH_AVAILABLE = RequirementCache("rich>=10.2.2")

if _RICH_AVAILABLE: from rich import get_console, reconfigure from rich.console import Console, RenderableType from rich.progress import BarColumn, Progress, ProgressColumn, Task, TaskID, TextColumn from rich.progress_bar import ProgressBar as _RichProgressBar from rich.style import Style from rich.text import Text

class CustomBarColumn(BarColumn):
    """Overrides ``BarColumn`` to provide support for dataloaders that do not define a size (infinite size) such as
    ``IterableDataset``."""

    def render(self, task: "Task") -> _RichProgressBar:
        """Gets a progress bar widget for a task."""
        assert task.total is not None
        assert task.remaining is not None
        return _RichProgressBar(
            total=max(0, task.total),
            completed=max(0, task.completed),
            width=None if self.bar_width is None else max(1, self.bar_width),
            pulse=not task.started or not math.isfinite(task.remaining),
            animation_time=task.get_time(),
            style=self.style,
            complete_style=self.complete_style,
            finished_style=self.finished_style,
            pulse_style=self.pulse_style,
        )

@dataclass
class CustomInfiniteTask(Task):
    """Overrides ``Task`` to define an infinite task.

    This is useful for datasets that do not define a size (infinite size) such as ``IterableDataset``.

    """

    @property
    def time_remaining(self) -> Optional[float]:
        return None

class CustomProgress(Progress):
    """Overrides ``Progress`` to support adding tasks that have an infinite total size."""

    def add_task(
        self,
        description: str,
        start: bool = True,
        total: Optional[float] = 100.0,
        completed: int = 0,
        visible: bool = True,
        **fields: Any,
    ) -> TaskID:
        assert total is not None
        if not math.isfinite(total):
            task = CustomInfiniteTask(
                self._task_index,
                description,
                total,
                completed,
                visible=visible,
                fields=fields,
                _get_time=self.get_time,
                _lock=self._lock,
            )
            return self.add_custom_task(task)
        return super().add_task(description, start, total, completed, visible, **fields)

    def add_custom_task(self, task: CustomInfiniteTask, start: bool = True) -> TaskID:
        with self._lock:
            self._tasks[self._task_index] = task
            if start:
                self.start_task(self._task_index)
            new_task_index = self._task_index
            self._task_index = TaskID(int(self._task_index) + 1)
        self.refresh()
        return new_task_index

class CustomTimeColumn(ProgressColumn):
    # Only refresh twice a second to prevent jitter
    max_refresh = 0.5

    def __init__(self, style: Union[str, Style]) -> None:
        self.style = style
        super().__init__()

    def render(self, task: "Task") -> Text:
        elapsed = task.finished_time if task.finished else task.elapsed
        remaining = task.time_remaining
        elapsed_delta = "-:--:--" if elapsed is None else str(timedelta(seconds=int(elapsed)))
        remaining_delta = "-:--:--" if remaining is None else str(timedelta(seconds=int(remaining)))
        return Text(f"{elapsed_delta} • {remaining_delta}", style=self.style)

class BatchesProcessedColumn(ProgressColumn):
    def __init__(self, style: Union[str, Style]):
        self.style = style
        super().__init__()

    def render(self, task: "Task") -> RenderableType:
        total = task.total if task.total != float("inf") else "--"
        return Text(f"{int(task.completed)}/{total}", style=self.style)

class ProcessingSpeedColumn(ProgressColumn):
    def __init__(self, style: Union[str, Style]):
        self.style = style
        super().__init__()

    def render(self, task: "Task") -> RenderableType:
        task_speed = f"{task.speed:>.2f}" if task.speed is not None else "0.00"
        return Text(f"{task_speed}it/s", style=self.style)

class MetricsTextColumn(ProgressColumn):
    """A column containing text."""

    def __init__(
        self,
        trainer: "pl.Trainer",
        style: Union[str, "Style"],
        text_delimiter: str,
        metrics_format: str,
    ):
        self._trainer = trainer
        self._tasks: dict[Union[int, TaskID], Any] = {}
        self._current_task_id = 0
        self._metrics: dict[Union[str, Style], Any] = {}
        self._style = style
        self._text_delimiter = text_delimiter
        self._metrics_format = metrics_format
        super().__init__()

    def update(self, metrics: dict[Any, Any]) -> None:
        # Called when metrics are ready to be rendered.
        # This is to prevent render from causing deadlock issues by requesting metrics
        # in separate threads.
        self._metrics = metrics

    def render(self, task: "Task") -> Text:
        assert isinstance(self._trainer.progress_bar_callback, RichProgressBar)
        if (
            self._trainer.state.fn != "fit"
            or self._trainer.sanity_checking
            or self._trainer.progress_bar_callback.train_progress_bar_id != task.id
        ):
            return Text()
        if self._trainer.training and task.id not in self._tasks:
            self._tasks[task.id] = "None"
            if self._renderable_cache:
                self._current_task_id = cast(TaskID, self._current_task_id)
                self._tasks[self._current_task_id] = self._renderable_cache[self._current_task_id][1]
            self._current_task_id = task.id
        if self._trainer.training and task.id != self._current_task_id:
            return self._tasks[task.id]

        metrics_texts = self._generate_metrics_texts()
        text = self._text_delimiter.join(metrics_texts)
        return Text(text, justify="left", style=self._style)

    def _generate_metrics_texts(self) -> Generator[str, None, None]:
        for name, value in self._metrics.items():
            if not isinstance(value, str):
                value = f"{value:{self._metrics_format}}"
            yield f"{name}: {value}"

@dataclass class RichProgressBarTheme: """Styles to associate to different base components.

Args:
    description: Style for the progress bar description. For eg., Epoch x, Testing, etc.
    progress_bar: Style for the bar in progress.
    progress_bar_finished: Style for the finished progress bar.
    progress_bar_pulse: Style for the progress bar when `IterableDataset` is being processed.
    batch_progress: Style for the progress tracker (i.e 10/50 batches completed).
    time: Style for the processed time and estimate time remaining.
    processing_speed: Style for the speed of the batches being processed.
    metrics: Style for the metrics

https://rich.readthedocs.io/en/stable/style.html

"""

description: Union[str, "Style"] = ""
progress_bar: Union[str, "Style"] = "#6206E0"
progress_bar_finished: Union[str, "Style"] = "#6206E0"
progress_bar_pulse: Union[str, "Style"] = "#6206E0"
batch_progress: Union[str, "Style"] = ""
time: Union[str, "Style"] = "dim"
processing_speed: Union[str, "Style"] = "dim underline"
metrics: Union[str, "Style"] = "italic"
metrics_text_delimiter: str = " "
metrics_format: str = ".3f"

[docs]class RichProgressBar(ProgressBar): """Create a progress bar with rich text formatting <https://github.com/Textualize/rich>_.

Install it with pip:

.. code-block:: bash

    pip install rich

.. code-block:: python

    from lightning.pytorch import Trainer
    from lightning.pytorch.callbacks import RichProgressBar

    trainer = Trainer(callbacks=RichProgressBar())

Args:
    refresh_rate: Determines at which rate (in number of batches) the progress bars get updated.
        Set it to ``0`` to disable the display.
    leave: Leaves the finished progress bar in the terminal at the end of the epoch. Default: False
    theme: Contains styles used to stylize the progress bar.
    console_kwargs: Args for constructing a `Console`

Raises:
    ModuleNotFoundError:
        If required `rich` package is not installed on the device.

Note:
    PyCharm users will need to enable “emulate terminal” in output console option in
    run/debug configuration to see styled output.
    Reference: https://rich.readthedocs.io/en/latest/introduction.html#requirements

"""

def __init__(
    self,
    refresh_rate: int = 1,
    leave: bool = False,
    theme: RichProgressBarTheme = RichProgressBarTheme(),
    console_kwargs: Optional[dict[str, Any]] = None,
) -> None:
    if not _RICH_AVAILABLE:
        raise ModuleNotFoundError(
            "`RichProgressBar` requires `rich` >= 10.2.2. Install it by running `pip install -U rich`."
        )

    super().__init__()
    self._refresh_rate: int = refresh_rate
    self._leave: bool = leave
    self._console: Optional[Console] = None
    self._console_kwargs = console_kwargs or {}
    self._enabled: bool = True
    self.progress: Optional[CustomProgress] = None
    self.train_progress_bar_id: Optional[TaskID]
    self.val_sanity_progress_bar_id: Optional[TaskID] = None
    self.val_progress_bar_id: Optional[TaskID]
    self.test_progress_bar_id: Optional[TaskID]
    self.predict_progress_bar_id: Optional[TaskID]
    self._reset_progress_bar_ids()
    self._metric_component: Optional[MetricsTextColumn] = None
    self._progress_stopped: bool = False
    self.theme = theme

@property
def refresh_rate(self) -> float:
    return self._refresh_rate

@property
def is_enabled(self) -> bool:
    return self._enabled and self.refresh_rate > 0

@property
def is_disabled(self) -> bool:
    return not self.is_enabled

@property
def train_progress_bar(self) -> "Task":
    assert self.progress is not None
    assert self.train_progress_bar_id is not None
    return self.progress.tasks[self.train_progress_bar_id]

@property
def val_sanity_check_bar(self) -> "Task":
    assert self.progress is not None
    assert self.val_sanity_progress_bar_id is not None
    return self.progress.tasks[self.val_sanity_progress_bar_id]

@property
def val_progress_bar(self) -> "Task":
    assert self.progress is not None
    assert self.val_progress_bar_id is not None
    return self.progress.tasks[self.val_progress_bar_id]

@property
def test_progress_bar(self) -> "Task":
    assert self.progress is not None
    assert self.test_progress_bar_id is not None
    return self.progress.tasks[self.test_progress_bar_id]

[docs] @override def disable(self) -> None: self._enabled = False

[docs] @override def enable(self) -> None: self._enabled = True

def _init_progress(self, trainer: "pl.Trainer") -> None:
    if self.is_enabled and (self.progress is None or self._progress_stopped):
        self._reset_progress_bar_ids()
        reconfigure(**self._console_kwargs)
        self._console = get_console()
        self._console.clear_live()
        self._metric_component = MetricsTextColumn(
            trainer,
            self.theme.metrics,
            self.theme.metrics_text_delimiter,
            self.theme.metrics_format,
        )
        self.progress = CustomProgress(
            *self.configure_columns(trainer),
            self._metric_component,
            auto_refresh=False,
            disable=self.is_disabled,
            console=self._console,
        )
        self.progress.start()
        # progress has started
        self._progress_stopped = False

def refresh(self) -> None:
    if self.progress:
        self.progress.refresh()

[docs] @override def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._init_progress(trainer)

[docs] @override def on_predict_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._init_progress(trainer)

[docs] @override def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._init_progress(trainer)

[docs] @override def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._init_progress(trainer)

[docs] @override def on_sanity_check_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._init_progress(trainer)

[docs] @override def on_sanity_check_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.progress is not None: assert self.val_sanity_progress_bar_id is not None self.progress.update(self.val_sanity_progress_bar_id, advance=0, visible=False) self.refresh()

[docs] @override def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.is_disabled: return total_batches = self.total_train_batches train_description = self._get_train_description(trainer.current_epoch)

    if self.train_progress_bar_id is not None and self._leave:
        self._stop_progress()
        self._init_progress(trainer)
    if self.progress is not None:
        if self.train_progress_bar_id is None:
            self.train_progress_bar_id = self._add_task(total_batches, train_description)
        else:
            self.progress.reset(
                self.train_progress_bar_id,
                total=total_batches,
                description=train_description,
                visible=True,
            )

    self.refresh()

[docs] @override def on_validation_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled or not self.has_dataloader_changed(dataloader_idx): return

    assert self.progress is not None

    if trainer.sanity_checking:
        if self.val_sanity_progress_bar_id is not None:
            self.progress.update(self.val_sanity_progress_bar_id, advance=0, visible=False)

        self.val_sanity_progress_bar_id = self._add_task(
            self.total_val_batches_current_dataloader,
            self.sanity_check_description,
            visible=False,
        )
    else:
        if self.val_progress_bar_id is not None:
            self.progress.update(self.val_progress_bar_id, advance=0, visible=False)

        # TODO: remove old tasks when new onces are created
        self.val_progress_bar_id = self._add_task(
            self.total_val_batches_current_dataloader,
            self.validation_description,
            visible=False,
        )

    self.refresh()


def _add_task(self, total_batches: Union[int, float], description: str, visible: bool = True) -> "TaskID":
    assert self.progress is not None
    return self.progress.add_task(
        f"[{self.theme.description}]{description}" if self.theme.description else description,
        total=total_batches,
        visible=visible,
    )

def _update(self, progress_bar_id: Optional["TaskID"], current: int, visible: bool = True) -> None:
    if self.progress is not None and self.is_enabled:
        assert progress_bar_id is not None
        total = self.progress.tasks[progress_bar_id].total
        assert total is not None
        if not self._should_update(current, total):
            return

        leftover = current % self.refresh_rate
        advance = leftover if (current == total and leftover != 0) else self.refresh_rate
        self.progress.update(progress_bar_id, advance=advance, visible=visible)
        self.refresh()

def _should_update(self, current: int, total: Union[int, float]) -> bool:
    return current % self.refresh_rate == 0 or current == total

[docs] @override def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.is_enabled and self.val_progress_bar_id is not None and trainer.state.fn == "fit": assert self.progress is not None self.progress.update(self.val_progress_bar_id, advance=0, visible=False) self.refresh()

[docs] @override def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if trainer.state.fn == "fit": self._update_metrics(trainer, pl_module) self.reset_dataloader_idx_tracker()

[docs] @override def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self.reset_dataloader_idx_tracker()

[docs] @override def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self.reset_dataloader_idx_tracker()

[docs] @override def on_test_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled or not self.has_dataloader_changed(dataloader_idx): return

    if self.test_progress_bar_id is not None:
        assert self.progress is not None
        self.progress.update(self.test_progress_bar_id, advance=0, visible=False)
    self.test_progress_bar_id = self._add_task(self.total_test_batches_current_dataloader, self.test_description)
    self.refresh()

[docs] @override def on_predict_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled or not self.has_dataloader_changed(dataloader_idx): return

    if self.predict_progress_bar_id is not None:
        assert self.progress is not None
        self.progress.update(self.predict_progress_bar_id, advance=0, visible=False)
    self.predict_progress_bar_id = self._add_task(
        self.total_predict_batches_current_dataloader, self.predict_description
    )
    self.refresh()

[docs] @override def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, ) -> None: self._update(self.train_progress_bar_id, batch_idx + 1) self._update_metrics(trainer, pl_module) self.refresh()

[docs] @override def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._update_metrics(trainer, pl_module)

[docs] @override def on_validation_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled: return if trainer.sanity_checking: self._update(self.val_sanity_progress_bar_id, batch_idx + 1) elif self.val_progress_bar_id is not None: self._update(self.val_progress_bar_id, batch_idx + 1) self.refresh()

[docs] @override def on_test_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled: return assert self.test_progress_bar_id is not None self._update(self.test_progress_bar_id, batch_idx + 1) self.refresh()

[docs] @override def on_predict_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: if self.is_disabled: return assert self.predict_progress_bar_id is not None self._update(self.predict_progress_bar_id, batch_idx + 1) self.refresh()

def _get_train_description(self, current_epoch: int) -> str:
    train_description = f"Epoch {current_epoch}"
    if self.trainer.max_epochs is not None:
        train_description += f"/{self.trainer.max_epochs - 1}"
    if len(self.validation_description) > len(train_description):
        # Padding is required to avoid flickering due of uneven lengths of "Epoch X"
        # and "Validation" Bar description
        train_description = f"{train_description:{len(self.validation_description)}}"
    return train_description

def _stop_progress(self) -> None:
    if self.progress is not None:
        self.progress.stop()
        # # signals for progress to be re-initialized for next stages
        self._progress_stopped = True

def _reset_progress_bar_ids(self) -> None:
    self.train_progress_bar_id = None
    self.val_sanity_progress_bar_id = None
    self.val_progress_bar_id = None
    self.test_progress_bar_id = None
    self.predict_progress_bar_id = None

def _update_metrics(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
    metrics = self.get_metrics(trainer, pl_module)
    if self._metric_component:
        self._metric_component.update(metrics)

[docs] @override def teardown(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: self._stop_progress()

[docs] @override def on_exception( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", exception: BaseException, ) -> None: self._stop_progress()

def configure_columns(self, trainer: "pl.Trainer") -> list:
    return [
        TextColumn("[progress.description]{task.description}"),
        CustomBarColumn(
            complete_style=self.theme.progress_bar,
            finished_style=self.theme.progress_bar_finished,
            pulse_style=self.theme.progress_bar_pulse,
        ),
        BatchesProcessedColumn(style=self.theme.batch_progress),
        CustomTimeColumn(style=self.theme.time),
        ProcessingSpeedColumn(style=self.theme.processing_speed),
    ]

def __getstate__(self) -> dict:
    state = self.__dict__.copy()
    # both the console and progress object can hold thread lock objects that are not pickleable
    state["progress"] = None
    state["_console"] = None
    return state