lightning.pytorch.callbacks.timer — PyTorch Lightning 2.5.1.post0 documentation (original) (raw)
Copyright The Lightning AI team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
r""" Timer ^^^^^ """
import logging import re import time from datetime import timedelta from typing import Any, Optional, Union
from typing_extensions import override
import lightning.pytorch as pl from lightning.pytorch.callbacks.callback import Callback from lightning.pytorch.trainer.states import RunningStage from lightning.pytorch.utilities import LightningEnum from lightning.pytorch.utilities.exceptions import MisconfigurationException from lightning.pytorch.utilities.rank_zero import rank_zero_info
log = logging.getLogger(name)
class Interval(LightningEnum): step = "step" epoch = "epoch"
[docs]class Timer(Callback): """The Timer callback tracks the time spent in the training, validation, and test loops and interrupts the Trainer if the given time limit for the training loop is reached.
Args:
duration: A string in the format DD:HH:MM:SS (days, hours, minutes seconds), or a :class:`datetime.timedelta`,
or a dict containing key-value compatible with :class:`~datetime.timedelta`.
interval: Determines if the interruption happens on epoch level or mid-epoch.
Can be either ``"epoch"`` or ``"step"``.
verbose: Set this to ``False`` to suppress logging messages.
Raises:
MisconfigurationException:
If ``duration`` is not in the expected format.
MisconfigurationException:
If ``interval`` is not one of the supported choices.
Example::
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import Timer
# stop training after 12 hours
timer = Timer(duration="00:12:00:00")
# or provide a datetime.timedelta
from datetime import timedelta
timer = Timer(duration=timedelta(weeks=1))
# or provide a dictionary
timer = Timer(duration=dict(weeks=4, days=2))
# force training to stop after given time limit
trainer = Trainer(callbacks=[timer])
# query training/validation/test time (in seconds)
timer.time_elapsed("train")
timer.start_time("validate")
timer.end_time("test")
"""
def __init__(
self,
duration: Optional[Union[str, timedelta, dict[str, int]]] = None,
interval: str = Interval.step,
verbose: bool = True,
) -> None:
super().__init__()
if isinstance(duration, str):
duration_match = re.fullmatch(r"(\d+):(\d\d):(\d\d):(\d\d)", duration.strip())
if not duration_match:
raise MisconfigurationException(
f"`Timer(duration={duration!r})` is not a valid duration. "
"Expected a string in the format DD:HH:MM:SS."
)
duration = timedelta(
days=int(duration_match.group(1)),
hours=int(duration_match.group(2)),
minutes=int(duration_match.group(3)),
seconds=int(duration_match.group(4)),
)
elif isinstance(duration, dict):
duration = timedelta(**duration)
if interval not in set(Interval):
raise MisconfigurationException(
f"Unsupported parameter value `Timer(interval={interval})`. Possible choices are:"
f" {', '.join(set(Interval))}"
)
self._duration = duration.total_seconds() if duration is not None else None
self._interval = interval
self._verbose = verbose
self._start_time: dict[RunningStage, Optional[float]] = {stage: None for stage in RunningStage}
self._end_time: dict[RunningStage, Optional[float]] = {stage: None for stage in RunningStage}
self._offset = 0
[docs] def start_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]: """Return the start time of a particular stage (in seconds)""" stage = RunningStage(stage) return self._start_time[stage]
[docs] def end_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]: """Return the end time of a particular stage (in seconds)""" stage = RunningStage(stage) return self._end_time[stage]
[docs] def time_elapsed(self, stage: str = RunningStage.TRAINING) -> float: """Return the time elapsed for a particular stage (in seconds)""" start = self.start_time(stage) end = self.end_time(stage) offset = self._offset if stage == RunningStage.TRAINING else 0 if start is None: return offset if end is None: return time.monotonic() - start + offset return end - start + offset
[docs] def time_remaining(self, stage: str = RunningStage.TRAINING) -> Optional[float]: """Return the time remaining for a particular stage (in seconds)""" if self._duration is not None: return self._duration - self.time_elapsed(stage) return None
[docs] @override def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._start_time[RunningStage.TRAINING] = time.monotonic()
[docs] @override def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._end_time[RunningStage.TRAINING] = time.monotonic()
[docs] @override def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._start_time[RunningStage.VALIDATING] = time.monotonic()
[docs] @override def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._end_time[RunningStage.VALIDATING] = time.monotonic()
[docs] @override def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._start_time[RunningStage.TESTING] = time.monotonic()
[docs] @override def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._end_time[RunningStage.TESTING] = time.monotonic()
[docs] @override def on_fit_start(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None: # this checks the time after the state is reloaded, regardless of the interval. # this is necessary in case we load a state whose timer is already depleted if self._duration is None: return self._check_time_remaining(trainer)
[docs] @override def on_train_batch_end(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None: if self._interval != Interval.step or self._duration is None: return self._check_time_remaining(trainer)
[docs] @override def on_train_epoch_end(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None: if self._interval != Interval.epoch or self._duration is None: return self._check_time_remaining(trainer)
[docs] @override def state_dict(self) -> dict[str, Any]: return {"time_elapsed": {stage.value: self.time_elapsed(stage) for stage in RunningStage}}
[docs] @override def load_state_dict(self, state_dict: dict[str, Any]) -> None: time_elapsed = state_dict.get("time_elapsed", {}) self._offset = time_elapsed.get(RunningStage.TRAINING.value, 0)
def _check_time_remaining(self, trainer: "pl.Trainer") -> None:
assert self._duration is not None
should_stop = self.time_elapsed() >= self._duration
should_stop = trainer.strategy.broadcast(should_stop)
trainer.should_stop = trainer.should_stop or should_stop
if should_stop and self._verbose:
elapsed = timedelta(seconds=int(self.time_elapsed(RunningStage.TRAINING)))
rank_zero_info(f"Time limit reached. Elapsed time is {elapsed}. Signaling Trainer to stop.")