Generator — PyTorch 2.0 documentation (original) (raw)

class torch.Generator(device='cpu')

Creates and returns a generator object that manages the state of the algorithm which produces pseudo random numbers. Used as a keyword argument in many In-place random samplingfunctions.

Parameters:

device (torch.device, optional) – the desired device for the generator.

Returns:

An torch.Generator object.

Return type:

Generator

Example:

g_cpu = torch.Generator() g_cuda = torch.Generator(device='cuda')

device

Generator.device -> device

Gets the current device of the generator.

Example:

g_cpu = torch.Generator() g_cpu.device device(type='cpu')

get_state() → Tensor

Returns the Generator state as a torch.ByteTensor.

Returns:

A torch.ByteTensor which contains all the necessary bits to restore a Generator to a specific point in time.

Return type:

Tensor

Example:

g_cpu = torch.Generator() g_cpu.get_state()

initial_seed() → int

Returns the initial seed for generating random numbers.

Example:

g_cpu = torch.Generator() g_cpu.initial_seed() 2147483647

manual_seed(seed) → Generator

Sets the seed for generating random numbers. Returns a torch.Generator object. It is recommended to set a large seed, i.e. a number that has a good balance of 0 and 1 bits. Avoid having many 0 bits in the seed.

Parameters:

seed (int) – The desired seed. Value must be within the inclusive range[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]. Otherwise, a RuntimeError is raised. Negative inputs are remapped to positive values with the formula0xffff_ffff_ffff_ffff + seed.

Returns:

An torch.Generator object.

Return type:

Generator

Example:

g_cpu = torch.Generator() g_cpu.manual_seed(2147483647)

seed() → int

Gets a non-deterministic random number from std::random_device or the current time and uses it to seed a Generator.

Example:

g_cpu = torch.Generator() g_cpu.seed() 1516516984916

set_state(new_state) → void

Sets the Generator state.

Parameters:

new_state (torch.ByteTensor) – The desired state.

Example:

g_cpu = torch.Generator() g_cpu_other = torch.Generator() g_cpu.set_state(g_cpu_other.get_state())