torch.empty — PyTorch 2.7 documentation (original) (raw)
torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor¶
Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument size
.
Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
Keyword Arguments
- out (Tensor, optional) – the output tensor.
- dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if
None
, uses a global default (see torch.set_default_dtype()). - layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
. - device (torch.device, optional) – the desired device of returned tensor. Default: if
None
, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
. - pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
. - memory_format (torch.memory_format, optional) – the desired memory format of returned Tensor. Default:
torch.contiguous_format
.
Example:
torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]])