torch.range — PyTorch main documentation (original) (raw)
torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor#
Returns a 1-D tensor of size ⌊end−startstep⌋+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1with values from start
to end
with step step
. Step is the gap between two values in the tensor.
outi+1=outi+step.\text{out}_{i+1} = \text{out}_i + \text{step}.
Warning
This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python’s range builtin. Instead, use torch.arange(), which produces values in [start, end).
Parameters
- start (float, optional) – the starting value for the set of points. Default:
0
. - end (float) – the ending value for the set of points
- step (float, optional) – the gap between each pair of adjacent points. Default:
1
.
Keyword Arguments
- out (Tensor, optional) – the output tensor.
- dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if
None
, uses a global default (see torch.set_default_dtype()). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or step are floating-point, thedtype is inferred to be the default dtype, seeget_default_dtype(). Otherwise, the dtype is inferred to be torch.int64. - layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
. - device (torch.device, optional) – the desired device of returned tensor. Default: if
None
, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
torch.range(1, 4) tensor([ 1., 2., 3., 4.]) torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])