Metadata: path = self.fs.concat_path(self.path, ".metadata") with self.fs.create_stream(path, "rb") as metadata_file: metadata = pickle.load(metadata_file) if getattr(metadata, "storage_meta", None) is None: metadata.storage_meta = StorageMeta() metadata.storage_meta.load_id = self.load_id return metadata def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None: self.storage_data = metadata.storage_data assert self.storage_data is not None def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: return plan def prepare_global_plan(self, plans: list[LoadPlan]) -> list[LoadPlan]: return plans @property def checkpoint_id(self) -> Union[str, os.PathLike]: """ return the checkpoint_id that will be used to load the checkpoint. """ return self.path @classmethod def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: return FileSystem.validate_checkpoint_id(checkpoint_id)">

torch.distributed.checkpoint.filesystem — PyTorch 2.7 documentation (original) (raw)

mypy: allow-untyped-defs

import collections import dataclasses import io import operator import os import pickle import queue import threading import uuid import warnings from abc import ABC, abstractmethod from collections.abc import Generator, Iterable, Iterator, Sequence from contextlib import contextmanager from dataclasses import dataclass from io import UnsupportedOperation from pathlib import Path from typing import Any, Callable, cast, IO, Optional, Union

introduced as collections.abc.Buffer in Python 3.12

from typing_extensions import Buffer

import torch from torch import Tensor from torch._utils import _get_available_device_type, _get_device_module from torch.distributed._shard._utils import narrow_tensor_by_index from torch.distributed.checkpoint._extension import ( ExtensionRegistry, StreamTransformExtension, ) from torch.distributed.checkpoint.metadata import Metadata, STATE_DICT_TYPE, StorageMeta from torch.distributed.checkpoint.planner import ( LoadItemType, LoadPlan, LoadPlanner, ReadItem, SavePlan, SavePlanner, WriteItem, WriteItemType, ) from torch.distributed.checkpoint.staging import BlockingAsyncStager from torch.distributed.checkpoint.storage import ( StorageReader, StorageWriter, WriteResult, ) from torch.distributed.checkpoint.utils import _create_file_view from torch.futures import Future

all = ["FileSystemWriter", "FileSystemReader", "FileSystem", "FileSystemBase"]

_metadata_fn: str = ".metadata"

@dataclass class _StorageInfo: """This is the per entry storage info."""

relative_path: str
offset: int
length: int
transform_descriptors: Optional[Sequence[str]] = None

def __getstate__(self):
    return {k: v for k, v in self.__dict__.items() if v is not None}

@dataclass class _StoragePrefix: prefix: str

DEFAULT_SUFFIX = ".distcp"

def _generate_uuid() -> str: return str(uuid.uuid4())

class _TensorLoader(ABC): @abstractmethod def add(self, size: int, obj: object) -> None: pass

@abstractmethod
def start_loading(self) -> None:
    pass

@abstractmethod
def values(self) -> Iterator[tuple[torch.Tensor, object]]:
    pass

class _SerialCpuLoader(_TensorLoader): def init(self, resolve_fun: Callable) -> None: self.resolve_fun = resolve_fun self.items: list[tuple[int, object]] = []

def add(self, size: int, obj: object) -> None:
    self.items.append((size, obj))

def start_loading(self) -> None:
    pass

def values(self) -> Iterator[tuple[torch.Tensor, object]]:
    for _, obj in self.items:
        tensor = self.resolve_fun(obj).detach()
        tensor = tensor.cpu()
        if tensor.storage().size() != tensor.numel():
            tensor = tensor.clone()
        yield (
            tensor,
            obj,
        )

class _OverlappingCpuLoader(_TensorLoader): def init( self, resolve_fun: Callable, stream: Optional[torch.Stream] = None, inflight_threshhold: int = 1_000_000, ) -> None: self.resolve_fun = resolve_fun self.items: list[tuple[int, object]] = [] self.inflight_threshhold = inflight_threshhold self.in_flight_data = 0 self.current_items: collections.deque = collections.deque() self.idx = 0 self.started = False self.device_type = ( stream.device_type if stream else _get_available_device_type() ) self.device_module = _get_device_module(self.device_type) self.stream = cast( torch.cuda.Stream, stream or self.device_module.current_stream() ) if self.stream != self.device_module.current_stream(): self.stream.wait_stream(self.device_module.current_stream())

@property
def _done(self) -> bool:
    return self.idx >= len(self.items)

def _drain(self) -> list[tuple[torch.Tensor, object]]:
    drained = []
    if self.in_flight_data >= self.inflight_threshhold:
        self.stream.synchronize()
    while self.in_flight_data >= self.inflight_threshhold:
        val = self.current_items.popleft()
        self.in_flight_data -= val[0].numel() * val[0].element_size()
        drained.append(val)
    return drained

def _refill(self) -> None:
    with self.device_module.stream(self.stream):
        while not self._done and self.in_flight_data < self.inflight_threshhold:
            _, obj = self.items[self.idx]
            self.idx += 1
            tensor = self.resolve_fun(obj).detach()
            if tensor.device.type == self.device_type:
                tensor = tensor.to(device="cpu", non_blocking=True)
            elif tensor.device == torch.device("cpu"):
                if (
                    tensor.untyped_storage().size()
                    != tensor.numel() * tensor.itemsize
                ):
                    # this forces the tensor to be both contiguous and with minimal storage
                    tensor = tensor.clone()

            self.current_items.append(
                (
                    tensor,
                    obj,
                )
            )
            self.in_flight_data += tensor.numel() * tensor.element_size()

def _finish(self) -> Iterable[tuple[torch.Tensor, object]]:
    assert self._done
    if len(self.current_items) > 0:
        self.stream.synchronize()
    return self.current_items

def add(self, size: int, obj: object) -> None:
    if self.started:
        raise RuntimeError("cannot add items after loading started")
    self.items.append((size, obj))

def start_loading(self) -> None:
    if self.started:
        return
    self.started = True
    self.items.sort(key=operator.itemgetter(0))
    self._refill()

def values(self) -> Iterator[tuple[torch.Tensor, object]]:
    self.start_loading()
    while not self._done:
        drained = self._drain()
        self._refill()
        yield from drained

    yield from self._finish()

class _StorageWriterTransforms: """ This is experimental, and will likely move elsewhere in the future. It lives here to minimize changes while we are still learning and gathering feedback. """

def __init__(
    self, extensions: Optional[Sequence[StreamTransformExtension]] = None
) -> None:
    """
    If the extensions arg is None, this means the implementation
    should provide whatever defaults it chooses.  An empty
    sequence indicates no extensions should be used.  At this
    time, the default extensions sequence is empty.
    """
    self.extensions = () if extensions is None else extensions

def transform_save_stream(
    self, write_item: WriteItem, raw_stream: io.IOBase
) -> tuple[IO[bytes], list[str]]:
    # In order to avoid leaking fds, transformers' close must
    # cascade to wrapped streams, but since this function can
    # append to the raw stream, we can't close the actual stream.
    # So, we use this to put a wrapper around the raw stream's
    # close() to make it a noop, and it gets closed once all files
    # are appended.

    class NoCloseWriter(io.IOBase):
        def __init__(self, raw: io.IOBase):
            self.raw = raw

        def writeable(self) -> bool:
            return True

        def write(self, b: Buffer) -> int:
            return self.raw.write(b)

        def close(self):
            self.flush()
            self.raw.flush()
            # but not close.

    transform_to = cast(IO[bytes], NoCloseWriter(raw_stream))

    for ex in self.extensions:
        transform_to = ex.transform_to(transform_to)

    return (transform_to, [ex.get_descriptor() for ex in reversed(self.extensions)])

def _item_size(item: WriteItem) -> int: size = 1 assert item.tensor_data is not None # can't use math.prod as PT needs to support older python for s in item.tensor_data.size: size *= s

dtype = item.tensor_data.properties.dtype
return size * torch._utils._element_size(dtype)

def _split_by_size_and_type(bins: int, items: list[WriteItem]) -> list[list[WriteItem]]: if bins == 1: return [items]

bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]

buckets: list[list[WriteItem]] = [[] for _ in range(bins)]
bucket_sizes = [0 for _ in range(bins)]

tensor_w.sort(key=_item_size, reverse=True)

for i, wi in enumerate(bytes_w):
    buckets[i % bins].append(wi)

for wi in tensor_w:
    # TODO replace with headq
    idx = min(enumerate(bucket_sizes), key=operator.itemgetter(1))[0]
    buckets[idx].append(wi)
    bucket_sizes[idx] += _item_size(wi)

return buckets

def _write_item( transforms: _StorageWriterTransforms, stream: io.IOBase, data: Union[io.BytesIO, torch.Tensor], write_item: WriteItem, storage_key: str, safe_tensors: bool = False, ) -> WriteResult: offset = stream.tell()

(transform_to, transform_descriptors) = transforms.transform_save_stream(
    write_item, stream
)

if write_item.type == WriteItemType.BYTE_IO:
    assert isinstance(data, io.BytesIO)
    transform_to.write(data.getbuffer())
else:
    assert isinstance(data, torch.Tensor)
    assert data.device == torch.device("cpu")
    if not safe_tensors:
        torch.save(data, transform_to)

transform_to.close()

if not safe_tensors or isinstance(data, io.BytesIO):
    length = stream.tell() - offset
else:
    length = data.numel() * data.element_size()

# For consistency with earlier versions, leave this field out of the
# metadata if there are no extensions.
info_transform_descriptors = (
    None if len(transform_descriptors) == 0 else transform_descriptors
)

return WriteResult(
    index=write_item.index,
    size_in_bytes=length,
    storage_data=_StorageInfo(
        storage_key,
        offset,
        length,
        transform_descriptors=info_transform_descriptors,
    ),
)

def _write_files_from_queue( create_stream: Callable, file_queue: queue.Queue, result_queue: queue.Queue, planner: SavePlanner, transforms: _StorageWriterTransforms, inflight_threshhold: int, use_fsync: bool, thread_count: int, safe_tensors: bool, ) -> None: try: while True: file_name, storage_key, write_items = file_queue.get_nowait() loader: _TensorLoader

        custom_backend_name = torch._C._get_privateuse1_backend_name()
        custom_device_mod = getattr(torch, custom_backend_name, None)

        # TODO: Using the OverlappingCpuLoader with multiple threads creates significant
        # performance degredation, observed as being related to cuda stream syncs. We
        # should try to fix this and use _OverlappingCpuLoader for all threaded cases
        if (
            thread_count == 1
            and (
                torch.cuda.is_available()
                or (custom_device_mod and custom_device_mod.is_available())
            )
            and inflight_threshhold > 0
        ):
            loader = _OverlappingCpuLoader(
                planner.resolve_data,
                inflight_threshhold=inflight_threshhold,
            )
        else:
            loader = _SerialCpuLoader(
                planner.resolve_data,
            )

        tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO]
        for write_item in tensor_w:
            loader.add(_item_size(write_item), write_item)
        loader.start_loading()

        bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO]
        write_results = []

        with create_stream(file_name, "wb") as stream:
            for write_item in bytes_w:
                data = planner.resolve_data(write_item)
                write_results.append(
                    _write_item(
                        transforms,
                        stream,
                        data,
                        write_item,
                        storage_key,
                        safe_tensors,
                    )
                )

            tensor_dict = {}
            for tensor, write_item in loader.values():
                assert tensor.is_cpu
                write_results.append(
                    _write_item(
                        transforms,
                        stream,
                        tensor,
                        write_item,
                        storage_key,
                        safe_tensors,
                    )
                )
                tensor_dict[write_item.index.fqn] = tensor

            if safe_tensors:
                from safetensors.torch import save  # type: ignore[import-not-found]

                stream.write(save(tensor_dict))

            if use_fsync:
                try:
                    os.fsync(stream.fileno())
                except (AttributeError, UnsupportedOperation):
                    os.sync()
            stream.close()
        result_queue.put(write_results)
except queue.Empty:
    pass

class FileSystemBase(ABC): @contextmanager @abstractmethod def create_stream( self, path: Union[str, os.PathLike], mode: str ) -> Generator[io.IOBase, None, None]: ...

@abstractmethod
def concat_path(
    self, path: Union[str, os.PathLike], suffix: str
) -> Union[str, os.PathLike]: ...

@abstractmethod
def rename(
    self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]
) -> None: ...

@abstractmethod
def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: ...

@abstractmethod
def mkdir(self, path: Union[str, os.PathLike]) -> None: ...

@classmethod
@abstractmethod
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: ...

@abstractmethod
def exists(self, path: Union[str, os.PathLike]) -> bool: ...

@abstractmethod
def rm_file(self, path: Union[str, os.PathLike]) -> None: ...

class FileSystem(FileSystemBase): @contextmanager def create_stream( self, path: Union[str, os.PathLike], mode: str ) -> Generator[io.IOBase, None, None]: if not isinstance(path, Path): path = Path(path) with path.open(mode) as stream: yield cast(io.IOBase, stream)

def concat_path(
    self, path: Union[str, os.PathLike], suffix: str
) -> Union[str, os.PathLike]:
    if not isinstance(path, Path):
        path = Path(path)
    return path / suffix

def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]:
    if not isinstance(path, Path):
        path = Path(path)
    return path

def rename(
    self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]
) -> None:
    if not isinstance(path, Path):
        path = Path(path)

    path.rename(cast(Path, new_path))

def mkdir(self, path: Union[str, os.PathLike]) -> None:
    if not isinstance(path, Path):
        path = Path(path)
    path.mkdir(parents=True, exist_ok=True)

@classmethod
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
    if isinstance(checkpoint_id, Path):
        return True

    if "://" in str(checkpoint_id):
        return False

    for p in Path(checkpoint_id).parents:
        if p.exists() and os.access(str(p), os.W_OK):
            return True

    return False

def exists(self, path: Union[str, os.PathLike]) -> bool:
    if not isinstance(path, Path):
        path = Path(path)
    return path.exists()

def rm_file(self, path: Union[str, os.PathLike]) -> None:
    if not isinstance(path, Path):
        path = Path(path)
    path.unlink()

class _FileSystemWriter(StorageWriter): """ Basic implementation of StorageWriter using file IO.

This implementation makes the following assumptions and simplifications:

* The checkpoint path is an empty or non-existing directory.
* File creation is atomic

The checkpoint consist of one file per write request plus
a `.metadata` file with the serialized metadata.

"""

def __init__(
    self,
    path: Union[str, os.PathLike],
    single_file_per_rank: bool = True,
    sync_files: bool = True,
    thread_count: int = 1,
    per_thread_copy_ahead: int = 10_000_000,
    overwrite: bool = True,
    _extensions: Optional[Sequence[StreamTransformExtension]] = None,
    *args: Any,
    **kwargs: Any,
) -> None:
    """
    Initialize the writer pointing to `path`.

    Args:
        path: directory where the checkpoint will be written to.
        single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
        sync_files : force files to be synced to permanent storage. Default to True.
        thread_count: Number of IO threads to use to write. Default to 1.
        per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
        overwrite: Whether to allow overwriting existing checkpoints. Defaults to True.
        _extensions: Extensions to apply to output streams (EXPERIMENTAL)

    N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
    """
    super().__init__()
    self.fs = FileSystem()
    self.path = self.fs.init_path(path)
    self.single_file_per_rank = single_file_per_rank
    self.sync_files = sync_files
    self.thread_count = thread_count
    self.per_thread_copy_ahead = per_thread_copy_ahead
    self.save_id = _generate_uuid()
    self.overwrite = overwrite
    self.transforms = _StorageWriterTransforms(_extensions)

def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
    if checkpoint_id:
        self.path = self.fs.init_path(checkpoint_id)
    self.save_id = _generate_uuid()

def set_up_storage_writer(self, is_coordinator: bool) -> None:
    pass

def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
    self.fs.mkdir(self.path)
    if self.fs.exists(self.metadata_path):
        if self.overwrite:
            warnings.warn(
                f"Detected an existing checkpoint in {self.metadata_path}, overwriting since {self.overwrite=}."
                " Past version 2.5 of PyTorch, `overwrite` will default to False. Set this variable to True to"
                " maintain this functionality or False to raise when an existing checkpoint is found."
            )
        else:
            raise RuntimeError(f"Checkpoint already exists and {self.overwrite=}.")

    return plan

def prepare_global_plan(self, plans: list[SavePlan]) -> list[SavePlan]:
    new_plans = [
        dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_"))
        for i, plan in enumerate(plans)
    ]
    return new_plans

def write_data(
    self,
    plan: SavePlan,
    planner: SavePlanner,
) -> Future[list[WriteResult]]:
    storage_plan: _StoragePrefix = plan.storage_data
    file_count = 0

    def gen_file():
        nonlocal file_count
        file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
        file_count += 1
        return file_name

    file_queue: queue.Queue = queue.Queue()
    if self.single_file_per_rank:
        for bucket in _split_by_size_and_type(self.thread_count, plan.items):
            file_name = gen_file()
            path = self.fs.concat_path(self.path, file_name)
            file_queue.put((path, file_name, bucket))
    else:
        for item in plan.items:
            file_name = gen_file()
            path = self.fs.concat_path(self.path, file_name)
            file_queue.put((path, file_name, [item]))

    return self._write_data(planner, file_queue)

def _write_data(
    self,
    planner: SavePlanner,
    file_queue: queue.Queue,
    safe_tensors: bool = False,
) -> Future[list[WriteResult]]:
    result_queue: queue.Queue = queue.Queue()

    threads = []
    for _ in range(1, self.thread_count):
        t = threading.Thread(
            target=_write_files_from_queue,
            args=(
                self.fs.create_stream,
                file_queue,
                result_queue,
                planner,
                self.transforms,
                self.per_thread_copy_ahead,
                self.sync_files,
                self.thread_count,
                safe_tensors,
            ),
        )
        t.start()
        threads.append(t)

    _write_files_from_queue(
        create_stream=self.fs.create_stream,
        file_queue=file_queue,
        result_queue=result_queue,
        planner=planner,
        transforms=self.transforms,
        inflight_threshhold=self.per_thread_copy_ahead,
        use_fsync=self.sync_files,
        thread_count=self.thread_count,
        safe_tensors=safe_tensors,
    )

    for t in threads:
        t.join()

    res = []
    try:
        while True:
            res += result_queue.get_nowait()
    except queue.Empty:
        fut: Future[list[WriteResult]] = Future()
        fut.set_result(res)
        return fut

def finish(self, metadata: Metadata, results: list[list[WriteResult]]) -> None:
    storage_md = {}
    for wr_list in results:
        storage_md.update({wr.index: wr.storage_data for wr in wr_list})
    metadata.storage_data = storage_md

    metadata.storage_meta = self.storage_meta()

    tmp_path = cast(Path, self.fs.concat_path(self.path, f"{_metadata_fn}.tmp"))
    with self.fs.create_stream(tmp_path, "wb") as metadata_file:
        pickle.dump(metadata, metadata_file)
        if self.sync_files:
            try:
                os.fsync(metadata_file.fileno())
            except (AttributeError, UnsupportedOperation):
                os.sync()

    # delete in-case other checkpoints were present.
    if self.fs.exists(self.metadata_path):
        self.fs.rm_file(self.metadata_path)

    self.fs.rename(tmp_path, self.metadata_path)

def storage_meta(self) -> Optional[StorageMeta]:
    return StorageMeta(checkpoint_id=self.checkpoint_id, save_id=self.save_id)

@property
def metadata_path(self) -> Union[str, os.PathLike]:
    return cast(Path, self.fs.concat_path(self.path, _metadata_fn))

@property
def checkpoint_id(self) -> Union[str, os.PathLike]:
    """
    return the checkpoint_id that will be used to save the checkpoint.
    """
    return self.path

@classmethod
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
    return FileSystem.validate_checkpoint_id(checkpoint_id)

class _StorageReaderTransforms: """ This is experimental, and will likely move elsewhere in the future. It lives here to minimize changes while we are still learning and gathering feedback. """

def __init__(self, extension_registry: Optional[ExtensionRegistry] = None) -> None:
    self.extension_registry = (
        ExtensionRegistry() if extension_registry is None else extension_registry
    )

def transform_load_stream(
    self,
    read_item: ReadItem,
    transform_descriptors: Sequence[str],
    raw_stream: IO[bytes],
) -> IO[bytes]:
    extensions = self.extension_registry.from_descriptor_list(transform_descriptors)
    transform_from = raw_stream
    for ex in extensions:
        if isinstance(ex, StreamTransformExtension):
            transform_from = ex.transform_from(transform_from)
    return transform_from

[docs]class FileSystemReader(StorageReader): def init( self, path: Union[str, os.PathLike], _extension_registry: Optional[ExtensionRegistry] = None, # EXPERIMENTAL ) -> None: super().init() self.fs = FileSystem() self.path = self.fs.init_path(path) self.storage_data: dict[Any, Any] = {} self.load_id = _generate_uuid() self.transforms = _StorageReaderTransforms(_extension_registry)

def _slice_file(self, file, sinfo: _StorageInfo) -> IO[bytes]:
    return cast(IO[bytes], _create_file_view(file, sinfo.offset, sinfo.length))

def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
    self.storage_data = {}
    if checkpoint_id:
        self.path = self.fs.init_path(checkpoint_id)
    self.load_id = _generate_uuid()

def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
    # group requests by file
    per_file: dict[str, list[ReadItem]] = {}
    for read_item in plan.items:
        item_md: _StorageInfo = self.storage_data[read_item.storage_index]
        path = item_md.relative_path
        per_file.setdefault(path, []).append(read_item)

    for relative_path, reqs in per_file.items():
        new_path = self.fs.concat_path(self.path, relative_path)
        with self.fs.create_stream(new_path, "rb") as stream:
            # TODO sort by offset and cache the reading
            for req in reqs:
                item_md = self.storage_data[req.storage_index]
                file_slice = self._slice_file(stream, item_md)
                transform_from = self.transforms.transform_load_stream(
                    req,
                    # This field wasn't present in older
                    # implementations so provide a fallback.
                    item_md.transform_descriptors or (),
                    file_slice,
                )

                if req.type == LoadItemType.BYTE_IO:
                    read_bytes = io.BytesIO(transform_from.read(-1))
                    read_bytes.seek(0)
                    planner.load_bytes(req, read_bytes)
                else:
                    if transform_from.seekable():
                        seekable = transform_from
                    else:
                        # torch.load requires a seekable input, so read the transform
                        # stream now and store the output if needed
                        seekable = io.BytesIO(transform_from.read(-1))
                        seekable.seek(0)

                    tensor = cast(
                        Tensor,
                        torch.load(
                            seekable,
                            map_location="cpu",
                            weights_only=True,
                        ),
                    )
                    tensor = narrow_tensor_by_index(
                        tensor, req.storage_offsets, req.lengths
                    )
                    target_tensor = planner.resolve_tensor(req).detach()

                    assert target_tensor.size() == tensor.size(), (
                        f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
                    )
                    target_tensor.copy_(tensor)
                    planner.commit_tensor(req, target_tensor)

    fut: Future = Future()
    fut.set_result(None)
    return fut

# Implementing the abstract function in StorageReader
def read_metadata(self) -> Metadata:
    path = self.fs.concat_path(self.path, ".metadata")
    with self.fs.create_stream(path, "rb") as metadata_file:
        metadata = pickle.load(metadata_file)

    if getattr(metadata, "storage_meta", None) is None:
        metadata.storage_meta = StorageMeta()
    metadata.storage_meta.load_id = self.load_id

    return metadata

def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
    self.storage_data = metadata.storage_data
    assert self.storage_data is not None

def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
    return plan

def prepare_global_plan(self, plans: list[LoadPlan]) -> list[LoadPlan]:
    return plans

@property
def checkpoint_id(self) -> Union[str, os.PathLike]:
    """
    return the checkpoint_id that will be used to load the checkpoint.
    """
    return self.path

@classmethod
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
    return FileSystem.validate_checkpoint_id(checkpoint_id)

[docs]class FileSystemWriter(_FileSystemWriter, BlockingAsyncStager): """ Basic implementation of StorageWriter using file IO.

This implementation makes the following assumptions and simplifications:

* The checkpoint path is an empty or non-existing directory.
* File creation is atomic

The checkpoint consist of one file per write request plus
a `.metadata` file with the serialized metadata.

"""

def __init__(
    self,
    path: Union[str, os.PathLike],
    single_file_per_rank: bool = True,
    sync_files: bool = True,
    thread_count: int = 1,
    per_thread_copy_ahead: int = 10_000_000,
    cache_staged_state_dict: bool = False,
    overwrite: bool = True,
    _extensions: Optional[Sequence[StreamTransformExtension]] = None,
) -> None:
    """
    Initialize the writer pointing to `path`.

    Args:
        path: directory where the checkpoint will be written to.
        single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
        sync_files : force files to be synced to permanent storage. Default to True.
        thread_count: Number of IO threads to use to write. Default to 1.
        per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
        cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency
            at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation
            that the stager is maintained and re-used for multiple dcp.async_save calls. Default to False.
        overwrite: Whether to allow overwriting existing checkpoints. Defaults to True.
        _extensions: Extensions to apply to output streams (EXPERIMENTAL)

    N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
    """
    _FileSystemWriter.__init__(
        self,
        path=path,
        single_file_per_rank=single_file_per_rank,
        sync_files=sync_files,
        thread_count=thread_count,
        per_thread_copy_ahead=per_thread_copy_ahead,
        overwrite=overwrite,
        _extensions=_extensions,
    )
    BlockingAsyncStager.__init__(
        self,
        cache_staged_state_dict=cache_staged_state_dict,
    )

[docs] def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """Override of AsyncStager.stage""" # in the async case, the state dict is already on CPU, so maintaining this # buffer makes no sense self.per_thread_copy_ahead = 0 return super().stage(state_dict)