torch.any (original) (raw)
torch.any(input: Tensor, *, out: Optional[Tensor]) → Tensor#
Tests if any element in input evaluates to True.
Note
This function matches the behaviour of NumPy in returning output of dtype bool for all supported dtypes except uint8. For uint8 the dtype of output is uint8 itself.
Parameters
input (Tensor) – the input tensor.
Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
a = torch.rand(1, 2).bool() a tensor([[False, True]], dtype=torch.bool) torch.any(a) tensor(True, dtype=torch.bool) a = torch.arange(0, 3) a tensor([0, 1, 2]) torch.any(a) tensor(True)
torch.any(input, dim, keepdim=False, *, out=None) → Tensor
For each row of input in the given dimension dim, returns True if any element in the row evaluate to True and False otherwise.
If keepdim is True, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see torch.squeeze()), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).
Parameters
- input (Tensor) – the input tensor.
- dim (int or tuple of ints , optional) – the dimension or dimensions to reduce. If
None, all dimensions are reduced. - keepdim (bool, optional) – whether the output tensor has
dimretained or not. Default:False.
Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
a = torch.randn(4, 2) < 0 a tensor([[ True, True], [False, True], [ True, True], [False, False]]) torch.any(a, 1) tensor([ True, True, True, False]) torch.any(a, 0) tensor([True, True])