torch.cat — PyTorch 2.7 documentation (original) (raw)
torch.cat(tensors, dim=0, *, out=None) → Tensor¶
Concatenates the given sequence of tensors in tensors
in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,)
.
torch.cat() can be seen as an inverse operation for torch.split()and torch.chunk().
torch.cat() can be best understood via examples.
See also
torch.stack() concatenates the given sequence along a new dimension.
Parameters
- tensors (sequence of Tensors) – Non-empty tensors provided must have the same shape, except in the cat dimension.
- dim (int, optional) – the dimension over which the tensors are concatenated
Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
x = torch.randn(2, 3) x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]])