torch.diag — PyTorch 2.7 documentation (original) (raw)
torch.diag(input, diagonal=0, *, out=None) → Tensor¶
- If
input
is a vector (1-D tensor), then returns a 2-D square tensor with the elements ofinput
as the diagonal. - If
input
is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements ofinput
.
The argument diagonal controls which diagonal to consider:
- If diagonal = 0, it is the main diagonal.
- If diagonal > 0, it is above the main diagonal.
- If diagonal < 0, it is below the main diagonal.
Parameters
Keyword Arguments
out (Tensor, optional) – the output tensor.
Examples:
Get the square matrix where the input vector is the diagonal:
a = torch.randn(3) a tensor([ 0.5950,-0.0872, 2.3298]) torch.diag(a) tensor([[ 0.5950, 0.0000, 0.0000], [ 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 2.3298]]) torch.diag(a, 1) tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], [ 0.0000, 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 0.0000, 2.3298], [ 0.0000, 0.0000, 0.0000, 0.0000]])
Get the k-th diagonal of a given matrix:
a = torch.randn(3, 3) a tensor([[-0.4264, 0.0255,-0.1064], [ 0.8795,-0.2429, 0.1374], [ 0.1029,-0.6482,-1.6300]]) torch.diag(a, 0) tensor([-0.4264,-0.2429,-1.6300]) torch.diag(a, 1) tensor([ 0.0255, 0.1374])