torch.linalg.cond — PyTorch 2.7 documentation (original) (raw)

torch.linalg.cond(A, p=None, *, out=None) → Tensor

Computes the condition number of a matrix with respect to a matrix norm.

Letting K\mathbb{K} be R\mathbb{R} or C\mathbb{C}, the condition number κ\kappa of a matrixA∈Kn×nA \in \mathbb{K}^{n \times n} is defined as

κ(A)=∥A∥p∥A−1∥p\kappa(A) = \|A\|_p\|A^{-1}\|_p

The condition number of A measures the numerical stability of the linear system AX = Bwith respect to a matrix norm.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

p defines the matrix norm that is computed. The following norms are supported:

p matrix norm
None 2-norm (largest singular value)
‘fro’ Frobenius norm
‘nuc’ nuclear norm
inf max(sum(abs(x), dim=1))
-inf min(sum(abs(x), dim=1))
1 max(sum(abs(x), dim=0))
-1 min(sum(abs(x), dim=0))
2 largest singular value
-2 smallest singular value

where inf refers to float(‘inf’), NumPy’s inf object, or any equivalent object.

For p is one of (‘fro’, ‘nuc’, inf, -inf, 1, -1), this function usestorch.linalg.norm() and torch.linalg.inv(). As such, in this case, the matrix (or every matrix in the batch) A has to be square and invertible.

For p in (2, -2), this function can be computed in terms of the singular valuesσ1≥…≥σn\sigma_1 \geq \ldots \geq \sigma_n

κ2(A)=σ1σnκ−2(A)=σnσ1\kappa_2(A) = \frac{\sigma_1}{\sigma_n}\qquad \kappa_{-2}(A) = \frac{\sigma_n}{\sigma_1}

In these cases, it is computed using torch.linalg.svdvals(). For these norms, the matrix (or every matrix in the batch) A may have any shape.

Note

When inputs are on a CUDA device, this function synchronizes that device with the CPU if p is one of (‘fro’, ‘nuc’, inf, -inf, 1, -1).

Parameters

Keyword Arguments

out (Tensor, optional) – output tensor. Ignored if None. Default: None.

Returns

A real-valued tensor, even when A is complex.

Raises

RuntimeError – if p is one of (‘fro’, ‘nuc’, inf, -inf, 1, -1) and the A matrix or any matrix in the batch A is not square or invertible.

Examples:

A = torch.randn(3, 4, 4, dtype=torch.complex64) torch.linalg.cond(A) A = torch.tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]]) torch.linalg.cond(A) tensor([1.4142]) torch.linalg.cond(A, 'fro') tensor(3.1623) torch.linalg.cond(A, 'nuc') tensor(9.2426) torch.linalg.cond(A, float('inf')) tensor(2.) torch.linalg.cond(A, float('-inf')) tensor(1.) torch.linalg.cond(A, 1) tensor(2.) torch.linalg.cond(A, -1) tensor(1.) torch.linalg.cond(A, 2) tensor([1.4142]) torch.linalg.cond(A, -2) tensor([0.7071])

A = torch.randn(2, 3, 3) torch.linalg.cond(A) tensor([[9.5917], [3.2538]]) A = torch.randn(2, 3, 3, dtype=torch.complex64) torch.linalg.cond(A) tensor([[4.6245], [4.5671]])