torch.linalg.lstsq — PyTorch 2.7 documentation (original) (raw)

torch.linalg.lstsq(A, B, rcond=None, *, driver=None)

Computes a solution to the least squares problem of a system of linear equations.

Letting K\mathbb{K} be R\mathbb{R} or C\mathbb{C}, the least squares problem for a linear system AX=BAX = B withA∈Km×n,B∈Km×kA \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times k} is defined as

min⁡X∈Kn×k∥AX−B∥F\min_{X \in \mathbb{K}^{n \times k}} \|AX - B\|_F

where ∥−∥F\|-\|_F denotes the Frobenius norm.

Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions.

driver chooses the backend function that will be used. For CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. To choose the best driver on CPU consider:

For CUDA input, the only valid driver is ‘gels’, which assumes that A is full-rank.

See also the full description of these drivers

rcond is used to determine the effective rank of the matrices in Awhen driver is one of (‘gelsy’, ‘gelsd’, ‘gelss’). In this case, if σi\sigma_i are the singular values of A in decreasing order,σi\sigma_i will be rounded down to zero if σi≤rcond⋅σ1\sigma_i \leq \text{rcond} \cdot \sigma_1. If rcond= None (default), rcond is set to the machine precision of the dtype of A times max(m, n).

This function returns the solution to the problem and some extra information in a named tuple of four tensors (solution, residuals, rank, singular_values). For inputs A, Bof shape (*, m, n), (*, m, k) respectively, it contains

Note

This function computes X = A.pinverse() @ B in a faster and more numerically stable way than performing the computations separately.

Warning

The default value of rcond may change in a future PyTorch release. It is therefore recommended to use a fixed value to avoid potential breaking changes.

Parameters

Keyword Arguments

driver (str, optional) – name of the LAPACK/MAGMA method to be used. If None, ‘gelsy’ is used for CPU inputs and ‘gels’ for CUDA inputs. Default: None.

Returns

A named tuple (solution, residuals, rank, singular_values).

Examples:

A = torch.randn(1,3,3) A tensor([[[-1.0838, 0.0225, 0.2275], [ 0.2438, 0.3844, 0.5499], [ 0.1175, -0.9102, 2.0870]]]) B = torch.randn(2,3,3) B tensor([[[-0.6772, 0.7758, 0.5109], [-1.4382, 1.3769, 1.1818], [-0.3450, 0.0806, 0.3967]], [[-1.3994, -0.1521, -0.1473], [ 1.9194, 1.0458, 0.6705], [-1.1802, -0.9796, 1.4086]]]) X = torch.linalg.lstsq(A, B).solution # A is broadcasted to shape (2, 3, 3) torch.dist(X, torch.linalg.pinv(A) @ B) tensor(1.5152e-06)

S = torch.linalg.lstsq(A, B, driver='gelsd').singular_values torch.dist(S, torch.linalg.svdvals(A)) tensor(2.3842e-07)

A[:, 0].zero_() # Decrease the rank of A rank = torch.linalg.lstsq(A, B).rank rank tensor([2])