torch.logdet — PyTorch 2.7 documentation (original) (raw)
Calculates log determinant of a square matrix or batches of square matrices.
It returns -inf
if the input has a determinant of zero, and NaN
if it has a negative determinant.
Note
Backward through logdet() internally uses SVD results when input
is not invertible. In this case, double backward through logdet() will be unstable in when input
doesn’t have distinct singular values. Seetorch.linalg.svd() for details.
See also
torch.linalg.slogdet() computes the sign (resp. angle) and natural logarithm of the absolute value of the determinant of real-valued (resp. complex) square matrices.
Parameters
input (Tensor) – the input tensor of size (*, n, n)
where *
is zero or more batch dimensions.
Example:
A = torch.randn(3, 3) torch.det(A) tensor(0.2611) torch.logdet(A) tensor(-1.3430) A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]],
[[ 0.3242, -0.9665],
[ 0.4539, -0.0887]],
[[ 1.1336, -0.4025],
[-0.7089, 0.9032]]])
A.det() tensor([1.1990, 0.4099, 0.7386]) A.det().log() tensor([ 0.1815, -0.8917, -0.3031])