torch.nanquantile — PyTorch 2.7 documentation (original) (raw)
torch.nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) → Tensor¶
This is a variant of torch.quantile() that “ignores” NaN
values, computing the quantiles q
as if NaN
values in input
did not exist. If all values in a reduced row are NaN
then the quantiles for that reduction will be NaN
. See the documentation for torch.quantile().
Parameters
- input (Tensor) – the input tensor.
- q (float or Tensor) – a scalar or 1D tensor of quantile values in the range [0, 1]
- dim (int) – the dimension to reduce.
- keepdim (bool) – whether the output tensor has
dim
retained or not.
Keyword Arguments
- interpolation (str) – interpolation method to use when the desired quantile lies between two data points. Can be
linear
,lower
,higher
,midpoint
andnearest
. Default islinear
. - out (Tensor, optional) – the output tensor.
Example:
t = torch.tensor([float('nan'), 1, 2]) t.quantile(0.5) tensor(nan) t.nanquantile(0.5) tensor(1.5000) t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) t tensor([[nan, nan], [1., 2.]]) t.nanquantile(0.5, dim=0) tensor([1., 2.]) t.nanquantile(0.5, dim=1) tensor([ nan, 1.5000])