AdaptiveMaxPool3d — PyTorch 2.7 documentation (original) (raw)

class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False)[source][source]

Applies a 3D adaptive max pooling over an input signal composed of several input planes.

The output is of size Dout×Hout×WoutD_{out} \times H_{out} \times W_{out}, for any input size. The number of output features is equal to the number of input planes.

Parameters

Shape:

Examples

target output size of 5x7x9

m = nn.AdaptiveMaxPool3d((5, 7, 9)) input = torch.randn(1, 64, 8, 9, 10) output = m(input)

target output size of 7x7x7 (cube)

m = nn.AdaptiveMaxPool3d(7) input = torch.randn(1, 64, 10, 9, 8) output = m(input)

target output size of 7x9x8

m = nn.AdaptiveMaxPool3d((7, None, None)) input = torch.randn(1, 64, 10, 9, 8) output = m(input)