GRU — PyTorch 2.7 documentation (original) (raw)

class torch.nn.GRU(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, dtype=None)[source][source]

Apply a multi-layer gated recurrent unit (GRU) RNN to an input sequence. For each element in the input sequence, each layer computes the following function:

rt=σ(Wirxt+bir+Whrh(t−1)+bhr)zt=σ(Wizxt+biz+Whzh(t−1)+bhz)nt=tanh⁡(Winxt+bin+rt⊙(Whnh(t−1)+bhn))ht=(1−zt)⊙nt+zt⊙h(t−1)\begin{array}{ll} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn})) \\ h_t = (1 - z_t) \odot n_t + z_t \odot h_{(t-1)} \end{array}

where hth_t is the hidden state at time t, xtx_t is the input at time t, h(t−1)h_{(t-1)} is the hidden state of the layer at time t-1 or the initial hidden state at time 0, and rtr_t,ztz_t, ntn_t are the reset, update, and new gates, respectively.σ\sigma is the sigmoid function, and ⊙\odot is the Hadamard product.

In a multilayer GRU, the input xt(l)x^{(l)}_t of the ll -th layer (l≥2l \ge 2) is the hidden state ht(l−1)h^{(l-1)}_t of the previous layer multiplied by dropout δt(l−1)\delta^{(l-1)}_t where each δt(l−1)\delta^{(l-1)}_t is a Bernoulli random variable which is 00 with probability dropout.

Parameters

Inputs: input, h_0

where:

N=batch sizeL=sequence lengthD=2 if bidirectional=True otherwise 1Hin=input_sizeHout=hidden_size\begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input\_size} \\ H_{out} ={} & \text{hidden\_size} \end{aligned}

Outputs: output, h_n

Variables

Note

All the weights and biases are initialized from U(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})where k=1hidden_sizek = \frac{1}{\text{hidden\_size}}

Note

For bidirectional GRUs, forward and backward are directions 0 and 1 respectively. Example of splitting the output layers when batch_first=False:output.view(seq_len, batch, num_directions, hidden_size).

Note

batch_first argument is ignored for unbatched inputs.

Note

The calculation of new gate ntn_t subtly differs from the original paper and other frameworks. In the original implementation, the Hadamard product (⊙)(\odot) between rtr_t and the previous hidden state h(t−1)h_{(t-1)} is done before the multiplication with the weight matrixW and addition of bias:

nt=tanh⁡(Winxt+bin+Whn(rt⊙h(t−1))+bhn)\begin{aligned} n_t = \tanh(W_{in} x_t + b_{in} + W_{hn} ( r_t \odot h_{(t-1)} ) + b_{hn}) \end{aligned}

This is in contrast to PyTorch implementation, which is done after Whnh(t−1)W_{hn} h_{(t-1)}

nt=tanh⁡(Winxt+bin+rt⊙(Whnh(t−1)+bhn))\begin{aligned} n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn})) \end{aligned}

This implementation differs on purpose for efficiency.

Note

If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype torch.float164) V100 GPU is used, 5) input data is not in PackedSequence format persistent algorithm can be selected to improve performance.

Examples:

rnn = nn.GRU(10, 20, 2) input = torch.randn(5, 3, 10) h0 = torch.randn(2, 3, 20) output, hn = rnn(input, h0)