LPPool2d — PyTorch 2.7 documentation (original) (raw)

class torch.nn.LPPool2d(norm_type, kernel_size, stride=None, ceil_mode=False)[source][source]

Applies a 2D power-average pooling over an input signal composed of several input planes.

On each window, the function computed is:

f(X)=∑x∈Xxppf(X) = \sqrt[p]{\sum_{x \in X} x^{p}}

The parameters kernel_size, stride can either be:

Note

If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.

Parameters

Shape:

Examples:

power-2 pool of square window of size=3, stride=2

m = nn.LPPool2d(2, 3, stride=2)

pool of non-square window of power 1.2

m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1)) input = torch.randn(20, 16, 50, 32) output = m(input)