LazyLinear — PyTorch 2.7 documentation (original) (raw)
class torch.nn.LazyLinear(out_features, bias=True, device=None, dtype=None)[source][source]¶
A torch.nn.Linear module where in_features is inferred.
In this module, the weight and bias are of torch.nn.UninitializedParameter
class. They will be initialized after the first call to forward
is done and the module will become a regular torch.nn.Linear module. The in_features
argument of the Linear is inferred from the input.shape[-1]
.
Check the torch.nn.modules.lazy.LazyModuleMixin for further documentation on lazy modules and their limitations.
Parameters
- out_features (int) – size of each output sample
- bias (UninitializedParameter) – If set to
False
, the layer will not learn an additive bias. Default:True
Variables
- weight (torch.nn.parameter.UninitializedParameter) – the learnable weights of the module of shape(out_features,in_features)(\text{out\_features}, \text{in\_features}). The values are initialized from U(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}), wherek=1in_featuresk = \frac{1}{\text{in\_features}}
- bias (torch.nn.parameter.UninitializedParameter) – the learnable bias of the module of shape (out_features)(\text{out\_features}). If
bias
isTrue
, the values are initialized fromU(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) wherek=1in_featuresk = \frac{1}{\text{in\_features}}
alias of Linear