LogSoftmax — PyTorch 2.7 documentation (original) (raw)
class torch.nn.LogSoftmax(dim=None)[source][source]¶
Applies the log(Softmax(x))\log(\text{Softmax}(x)) function to an n-dimensional input Tensor.
The LogSoftmax formulation can be simplified as:
LogSoftmax(xi)=log(exp(xi)∑jexp(xj))\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
Shape:
- Input: (∗)(*) where * means, any number of additional dimensions
- Output: (∗)(*), same shape as the input
Parameters
dim (int) – A dimension along which LogSoftmax will be computed.
Returns
a Tensor of the same dimension and shape as the input with values in the range [-inf, 0)
Return type
None
Examples:
m = nn.LogSoftmax(dim=1) input = torch.randn(2, 3) output = m(input)