MaxPool2d — PyTorch 2.7 documentation (original) (raw)

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)[source][source]

Applies a 2D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,H,W)(N, C, H, W), output (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) and kernel_size (kH,kW)(kH, kW)can be precisely described as:

out(Ni,Cj,h,w)=max⁡m=0,…,kH−1max⁡n=0,…,kW−1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)\begin{aligned} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times h + m, \text{stride[1]} \times w + n) \end{aligned}

If padding is non-zero, then the input is implicitly padded with negative infinity on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding, dilation can either be:

Parameters

Shape:

Examples:

pool of square window of size=3, stride=2

m = nn.MaxPool2d(3, stride=2)

pool of non-square window

m = nn.MaxPool2d((3, 2), stride=(2, 1)) input = torch.randn(20, 16, 50, 32) output = m(input)