RNNCell — PyTorch 2.7 documentation (original) (raw)
class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh', device=None, dtype=None)[source][source]¶
An Elman RNN cell with tanh or ReLU non-linearity.
h′=tanh(Wihx+bih+Whhh+bhh)h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})
If nonlinearity
is ‘relu’, then ReLU is used in place of tanh.
Parameters
- input_size (int) – The number of expected features in the input x
- hidden_size (int) – The number of features in the hidden state h
- bias (bool) – If
False
, then the layer does not use bias weights b_ih and b_hh. Default:True
- nonlinearity (str) – The non-linearity to use. Can be either
'tanh'
or'relu'
. Default:'tanh'
Inputs: input, hidden
- input: tensor containing input features
- hidden: tensor containing the initial hidden state Defaults to zero if not provided.
Outputs: h’
- h’ of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch
Shape:
- input: (N,Hin)(N, H_{in}) or (Hin)(H_{in}) tensor containing input features whereHinH_{in} = input_size.
- hidden: (N,Hout)(N, H_{out}) or (Hout)(H_{out}) tensor containing the initial hidden state where HoutH_{out} = hidden_size. Defaults to zero if not provided.
- output: (N,Hout)(N, H_{out}) or (Hout)(H_{out}) tensor containing the next hidden state.
Variables
- weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape(hidden_size, input_size)
- weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape(hidden_size, hidden_size)
- bias_ih – the learnable input-hidden bias, of shape (hidden_size)
- bias_hh – the learnable hidden-hidden bias, of shape (hidden_size)
Note
All the weights and biases are initialized from U(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})where k=1hidden_sizek = \frac{1}{\text{hidden\_size}}
Examples:
rnn = nn.RNNCell(10, 20) input = torch.randn(6, 3, 10) hx = torch.randn(3, 20) output = [] for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)