ReplicationPad1d β€” PyTorch 2.7 documentation (original) (raw)

class torch.nn.ReplicationPad1d(padding)[source][source]ΒΆ

Pads the input tensor using replication of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses (padding_left\text{padding\_left}, padding_right\text{padding\_right})

Shape:

Examples:

m = nn.ReplicationPad1d(2) input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) input tensor([[[0., 1., 2., 3.], [4., 5., 6., 7.]]]) m(input) tensor([[[0., 0., 0., 1., 2., 3., 3., 3.], [4., 4., 4., 5., 6., 7., 7., 7.]]])

using different paddings for different sides

m = nn.ReplicationPad1d((3, 1)) m(input) tensor([[[0., 0., 0., 0., 1., 2., 3., 3.], [4., 4., 4., 4., 5., 6., 7., 7.]]])