ConstantLR — PyTorch 2.7 documentation (original) (raw)

class torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.3333333333333333, total_iters=5, last_epoch=-1)[source][source]

Multiply the learning rate of each parameter group by a small constant factor.

The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters. Notice that such multiplication of the small constant factor can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.

Parameters

Example

Assuming optimizer uses lr = 0.05 for all groups

lr = 0.025 if epoch == 0

lr = 0.025 if epoch == 1

lr = 0.025 if epoch == 2

lr = 0.025 if epoch == 3

lr = 0.05 if epoch >= 4

scheduler = ConstantLR(optimizer, factor=0.5, total_iters=4) for epoch in range(100): train(...) validate(...) scheduler.step()

get_last_lr()[source]

Return last computed learning rate by current scheduler.

Return type

list[float]

get_lr()[source][source]

Compute the learning rate of each parameter group.

load_state_dict(state_dict)[source]

Load the scheduler’s state.

Parameters

state_dict (dict) – scheduler state. Should be an object returned from a call to state_dict().

state_dict()[source]

Return the state of the scheduler as a dict.

It contains an entry for every variable in self.__dict__ which is not the optimizer.

step(epoch=None)[source]

Perform a step.