StepLR — PyTorch 2.7 documentation (original) (raw)

class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)[source][source]

Decays the learning rate of each parameter group by gamma every step_size epochs.

Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.

Parameters

Example

Assuming optimizer uses lr = 0.05 for all groups

lr = 0.05 if epoch < 30

lr = 0.005 if 30 <= epoch < 60

lr = 0.0005 if 60 <= epoch < 90

...

scheduler = StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(100): train(...) validate(...) scheduler.step()

get_last_lr()[source]

Return last computed learning rate by current scheduler.

Return type

list[float]

get_lr()[source][source]

Compute the learning rate of each parameter group.

load_state_dict(state_dict)[source]

Load the scheduler’s state.

Parameters

state_dict (dict) – scheduler state. Should be an object returned from a call to state_dict().

state_dict()[source]

Return the state of the scheduler as a dict.

It contains an entry for every variable in self.__dict__ which is not the optimizer.

step(epoch=None)[source]

Perform a step.