torch.pow — PyTorch 2.7 documentation (original) (raw)
torch.pow(input, exponent, *, out=None) → Tensor¶
Takes the power of each element in input
with exponent
and returns a tensor with the result.
exponent
can be either a single float
number or a Tensorwith the same number of elements as input
.
When exponent
is a scalar value, the operation applied is:
outi=xiexponent\text{out}_i = x_i ^ \text{exponent}
When exponent
is a tensor, the operation applied is:
outi=xiexponenti\text{out}_i = x_i ^ {\text{exponent}_i}
When exponent
is a tensor, the shapes of input
and exponent
must be broadcastable.
Parameters
Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
a = torch.randn(4) a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) exp = torch.arange(1., 5.)
a = torch.arange(1., 5.) a tensor([ 1., 2., 3., 4.]) exp tensor([ 1., 2., 3., 4.]) torch.pow(a, exp) tensor([ 1., 4., 27., 256.])
torch.pow(self, exponent, *, out=None) → Tensor
self
is a scalar float
value, and exponent
is a tensor. The returned tensor out
is of the same shape as exponent
The operation applied is:
outi=selfexponenti\text{out}_i = \text{self} ^ {\text{exponent}_i}
Parameters
- self (float) – the scalar base value for the power operation
- exponent (Tensor) – the exponent tensor
Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
exp = torch.arange(1., 5.) base = 2 torch.pow(base, exp) tensor([ 2., 4., 8., 16.])