torch.quantized_batch_norm — PyTorch 2.7 documentation (original) (raw)
torch.quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) → Tensor¶
Applies batch normalization on a 4D (NCHW) quantized tensor.
y=x−E[x]Var[x]+ϵ∗γ+βy = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
Parameters
- input (Tensor) – quantized tensor
- weight (Tensor) – float tensor that corresponds to the gamma, size C
- bias (Tensor) – float tensor that corresponds to the beta, size C
- mean (Tensor) – float mean value in batch normalization, size C
- var (Tensor) – float tensor for variance, size C
- eps (float) – a value added to the denominator for numerical stability.
- output_scale (float) – output quantized tensor scale
- output_zero_point (int) – output quantized tensor zero_point
Returns
A quantized tensor with batch normalization applied.
Return type
Example:
qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2) tensor([[[[-0.2000, -0.2000], [ 1.6000, -0.2000]],
[[-0.4000, -0.4000],
[-0.4000, 0.6000]]],
[[[-0.2000, -0.2000],
[-0.2000, -0.2000]],
[[ 0.6000, -0.4000],
[ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2)