Save and Load the Model — PyTorch Tutorials 2.7.0+cu126 documentation (original) (raw)
beginner/basics/saveloadrun_tutorial
Run in Google Colab
Colab
Download Notebook
Notebook
View on GitHub
GitHub
Note
Click hereto download the full example code
Learn the Basics ||Quickstart ||Tensors ||Datasets & DataLoaders ||Transforms ||Build Model ||Autograd ||Optimization ||Save & Load Model
Created On: Feb 09, 2021 | Last Updated: Oct 15, 2024 | Last Verified: Nov 05, 2024
In this section we will look at how to persist model state with saving, loading and running model predictions.
import torch import torchvision.models as models
Saving and Loading Model Weights¶
PyTorch models store the learned parameters in an internal state dictionary, called state_dict
. These can be persisted via the torch.save
method:
Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/vgg16-397923af.pth
0%| | 0.00/528M [00:00<?, ?B/s] 8%|8 | 43.5M/528M [00:00<00:01, 455MB/s] 17%|#6 | 87.1M/528M [00:00<00:01, 456MB/s] 25%|##4 | 131M/528M [00:00<00:01, 411MB/s] 32%|###2 | 170M/528M [00:00<00:00, 398MB/s] 41%|#### | 214M/528M [00:00<00:00, 418MB/s] 49%|####8 | 258M/528M [00:00<00:00, 430MB/s] 57%|#####7 | 301M/528M [00:00<00:00, 438MB/s] 65%|######5 | 345M/528M [00:00<00:00, 444MB/s] 74%|#######3 | 388M/528M [00:00<00:00, 447MB/s] 82%|########1 | 432M/528M [00:01<00:00, 450MB/s] 90%|######### | 475M/528M [00:01<00:00, 451MB/s] 98%|#########8| 518M/528M [00:01<00:00, 424MB/s] 100%|##########| 528M/528M [00:01<00:00, 429MB/s]
To load model weights, you need to create an instance of the same model first, and then load the parameters using load_state_dict()
method.
In the code below, we set weights_only=True
to limit the functions executed during unpickling to only those necessary for loading weights. Using weights_only=True
is considered a best practice when loading weights.
model = models.vgg16() # we do not specify weights
, i.e. create untrained model
model.load_state_dict(torch.load('model_weights.pth', weights_only=True))
model.eval()
VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=1000, bias=True) ) )
Note
be sure to call model.eval()
method before inferencing to set the dropout and batch normalization layers to evaluation mode. Failing to do this will yield inconsistent inference results.
Saving and Loading Models with Shapes¶
When loading model weights, we needed to instantiate the model class first, because the class defines the structure of a network. We might want to save the structure of this class together with the model, in which case we can pass model
(and not model.state_dict()
) to the saving function:
We can then load the model as demonstrated below.
As described in Saving and loading torch.nn.Modules, saving state_dict
is considered the best practice. However, below we use weights_only=False
because this involves loading the model, which is a legacy use case for torch.save
.
model = torch.load('model.pth', weights_only=False),
Note
This approach uses Python pickle module when serializing the model, thus it relies on the actual class definition to be available when loading the model.