dplyr in Python — rpy2 3.5.13 documentation (original) (raw)

from functools import partial from rpy2.ipython import html html.html_rdataframe=partial(html.html_rdataframe, table_class="docutils")

We need 2 things for this:

1- A data frame (using one of R’s demo datasets).

from rpy2.robjects.packages import importr, data datasets = importr('datasets') mtcars_env = data(datasets).fetch('mtcars') mtcars = mtcars_env['mtcars']

In addition to that, and because this tutorial is in a notebook, we initialize HTML rendering for R objects (pretty display of R data frames).

import rpy2.ipython.html rpy2.ipython.html.init_printing()

2- dplyr

from rpy2.robjects.lib.dplyr import DataFrame from rpy2.robjects import rl

/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/rpy2/robjects/lib/dplyr.py:27: UserWarning: This was designed againt dplyr versions starting with 1.0 but you have 1.1.2 warnings.warn(

With this we have the choice of chaining (D3-style)

dataf = ( DataFrame(mtcars) .filter(rl('gear>3')) .mutate(powertoweight=rl('hp*36/wt')) .group_by(rl('gear')) .summarize(mean_ptw=rl('mean(powertoweight)')) )

dataf

DataFrame with 2 rows and 2 columns:

gear mean_ptw
0 1 4.0 1237.1266499803169
1 2 5.0 2574.0331639315027

or with pipes (magrittr style).

currently no longer working

from rpy2.robjects.lib.dplyr import (filter, mutate, group_by, summarize)

if False: dataf = (DataFrame(mtcars) >> filter(rl('gear>3')) >> mutate(powertoweight=rl('hp*36/wt')) >> group_by(rl('gear')) >> summarize(mean_ptw=rl('mean(powertoweight)')))

dataf

The function rl creates unevaluated R language objects, which are then consummed by the dplyr function, just like it would be happening when using dplyr in R itself. This means that when writingmean(powertoweight) the R function mean() is used.

Using a Python function is not too difficult though. We can just call Python back from R. To achieve this we simply use the decoratorrternalize.

Define a python function, and make

it a function R can use through rternalize

from rpy2.rinterface import rternalize @rternalize(signature=False) def mean_np(x): import statistics return statistics.mean(x)

Bind that function to a symbol in R's

global environment

from rpy2.robjects import globalenv globalenv['mean_np'] = mean_np

Write a dplyr chain of operations,

using our Python function mean_np

dataf = ( DataFrame(mtcars) .filter(rl('gear>3')) .mutate(powertoweight=rl('hp*36/wt')) .group_by(rl('gear')) .summarize(mean_ptw=rl('mean(powertoweight)'), mean_np_ptw=rl('mean_np(powertoweight)')) )

dataf

DataFrame with 2 rows and 3 columns:

gear mean_ptw mean_np_ptw
0 1 4.0 1237.1266499803169 1237.1266499803169
1 2 5.0 2574.0331639315027 2574.0331639315027

It is also possible to carry this out without having to place the custom function in R’s global environment, although this is not straightforward.

First we delete our Python callback in globalenv to

ensure that we are picking up our callback in our

specific environment rather than this one.

del(globalenv['mean_np'])

from rpy2.robjects import Environment my_env = Environment() my_env['mean_np'] = mean_np

Create an rlang "quosure" object within

a given environment. We use the R package

rlang used by dplyr.

from rpy2.robjects.lib.dplyr import rlang

myquo = rlang.quo.rcall( [(None, rl('mean_np(rlang::enexpr(powertoweight))'))], environment=my_env )

dataf = ( DataFrame(mtcars) .filter(rl('gear>3')) .mutate(powertoweight=rl('hp*36/wt')) .group_by(rl('gear')) .summarize( mean_ptw=rl('mean(powertoweight)'), mean_np_ptw=myquo) )

dataf

DataFrame with 2 rows and 3 columns:

gear mean_ptw mean_np_ptw
0 1 4.0 1237.1266499803169 1237.1266499803169
1 2 5.0 2574.0331639315027 2574.0331639315027

note: rpy2’s interface to dplyr is implementing a fix to the (non-?)issue 1323 (https://github.com/hadley/dplyr/issues/1323)

The seamless translation of transformations to SQL whenever the data are in a table can be used directly. Since we are lifting the original implementation of dplyr, it just works.

from rpy2.robjects.lib.dplyr import dplyr

in-memory SQLite database broken in dplyr's src_sqlite

db = dplyr.src_sqlite(":memory:")

import tempfile with tempfile.NamedTemporaryFile() as db_fh: db = dplyr.src_sqlite(db_fh.name) # copy the table to that database dataf_db = DataFrame(mtcars).copy_to(db, name="mtcars") res = (dataf_db .filter(rl('gear>3')) .mutate(powertoweight=rl('hp*36/wt')) .group_by(rl('gear')) .summarize(mean_ptw=rl('mean(powertoweight)'))) print(res) #

Source: SQL [2 x 2]

Database: sqlite 3.41.2 [/tmp/tmpxo4an2ls]

gear mean_ptw 1 4 1237. 2 5 2574.

Since we are manipulating R objects, anything available to R is also available to us. If we want to see the SQL code generated that’s:

silent = dplyr.show_query(res)

SELECT gear, AVG(powertoweight) AS mean_ptw FROM ( SELECT [*](#id1), (hp * 36.0) / wt AS powertoweight FROM mtcars WHERE (gear > 3.0) ) GROUP BY gear

The conversion rules in rpy2 make the above easily applicable to pandas data frames, completing the “lexical loan” of the dplyr vocabulary from R.

from rpy2.robjects import pandas2ri from rpy2.robjects import default_converter

Using a conversion context in which the pandas conversion is

added to the default conversion rules, the rpy2 object

mtcars (an R data frame) is converted to a pandas data frame.

with (default_converter + pandas2ri.converter).context() as cv: pd_mtcars = mtcars_env['mtcars'] print(type(pd_mtcars))

<class 'pandas.core.frame.DataFrame'>

Using a local conversion context lets us also go from the pandas data frame to our dplyr-augmented R data frame and use the dplyr transformations on it.

with (default_converter + pandas2ri.converter).context() as cv: dataf = (DataFrame(pd_mtcars) .filter(rl('gear>=3')) .mutate(powertoweight=rl('hp*36/wt')) .group_by(rl('gear')) .summarize(mean_ptw=rl('mean(powertoweight)')))

dataf

DataFrame with 1 rows and 1 columns:

mean_ptw
0 1 1632.0477884748632

Reuse. Get things done. Don’t reimplement.