Example: Getting diagnostics - Rust Compiler Development Guide (original) (raw)
Rust Compiler Development Guide
Example: Getting diagnostic through rustc_interface
The rustc_interface allows you to intercept diagnostics that would otherwise be printed to stderr.
Getting diagnostics
To get diagnostics from the compiler, configure rustc_interface::Config to output diagnostic to a buffer, and run rustc_hir_typeck::typeck for each item.
// Tested with nightly-2025-03-28
#![feature(rustc_private)]
extern crate rustc_data_structures;
extern crate rustc_driver;
extern crate rustc_error_codes;
extern crate rustc_errors;
extern crate rustc_hash;
extern crate rustc_hir;
extern crate rustc_interface;
extern crate rustc_session;
extern crate rustc_span;
use std::sync::{Arc, Mutex};
use rustc_errors::emitter::Emitter;
use rustc_errors::registry::{self, Registry};
use rustc_errors::translation::Translate;
use rustc_errors::{DiagInner, FluentBundle};
use rustc_session::config;
use rustc_span::source_map::SourceMap;
struct DebugEmitter {
source_map: Arc<SourceMap>,
diagnostics: Arc<Mutex<Vec<DiagInner>>>,
}
impl Translate for DebugEmitter {
fn fluent_bundle(&self) -> Option<&FluentBundle> {
None
}
fn fallback_fluent_bundle(&self) -> &FluentBundle {
panic!("this emitter should not translate message")
}
}
impl Emitter for DebugEmitter {
fn emit_diagnostic(&mut self, diag: DiagInner, _: &Registry) {
self.diagnostics.lock().unwrap().push(diag);
}
fn source_map(&self) -> Option<&SourceMap> {
Some(&self.source_map)
}
}
fn main() {
let buffer: Arc<Mutex<Vec<DiagInner>>> = Arc::default();
let diagnostics = buffer.clone();
let config = rustc_interface::Config {
opts: config::Options::default(),
// This program contains a type error.
input: config::Input::Str {
name: rustc_span::FileName::Custom("main.rs".into()),
input: "
fn main() {
let x: &str = 1;
}
"
.into(),
},
crate_cfg: Vec::new(),
crate_check_cfg: Vec::new(),
output_dir: None,
output_file: None,
file_loader: None,
locale_resources: rustc_driver::DEFAULT_LOCALE_RESOURCES.to_owned(),
lint_caps: rustc_hash::FxHashMap::default(),
psess_created: Some(Box::new(|parse_sess| {
parse_sess.dcx().set_emitter(Box::new(DebugEmitter {
source_map: parse_sess.clone_source_map(),
diagnostics,
}));
})),
register_lints: None,
override_queries: None,
registry: registry::Registry::new(rustc_errors::codes::DIAGNOSTICS),
make_codegen_backend: None,
expanded_args: Vec::new(),
ice_file: None,
hash_untracked_state: None,
using_internal_features: &rustc_driver::USING_INTERNAL_FEATURES,
};
rustc_interface::run_compiler(config, |compiler| {
let krate = rustc_interface::passes::parse(&compiler.sess);
rustc_interface::create_and_enter_global_ctxt(&compiler, krate, |tcx| {
// Iterate all the items defined and perform type checking.
tcx.par_hir_body_owners(|item_def_id| {
tcx.ensure_ok().typeck(item_def_id);
});
});
// If the compiler has encountered errors when this closure returns, it will abort (!) the program.
// We avoid this by resetting the error count before returning
compiler.sess.dcx().reset_err_count();
});
// Read buffered diagnostics.
buffer.lock().unwrap().iter().for_each(|diagnostic| {
println!("{diagnostic:#?}");
});
}