Lasso path using LARS — scikit-learn 0.20.4 documentation (original) (raw)

Note

Click here to download the full example code

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter.

../../_images/sphx_glr_plot_lasso_lars_001.png

Out:

Computing regularization path using the LARS ... .

print(doc)

Author: Fabian Pedregosa fabian.pedregosa@inria.fr

Alexandre Gramfort alexandre.gramfort@inria.fr

License: BSD 3 clause

import numpy as np import matplotlib.pyplot as plt

from sklearn import linear_model from sklearn import datasets

diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target

print("Computing regularization path using the LARS ...") _, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1]

plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()

Total running time of the script: ( 0 minutes 0.162 seconds)

Gallery generated by Sphinx-Gallery