sklearn.preprocessing.MultiLabelBinarizer — scikit-learn 0.20.4 documentation (original) (raw)

class sklearn.preprocessing. MultiLabelBinarizer(classes=None, sparse_output=False)[source]

Transform between iterable of iterables and a multilabel format

Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label.

Parameters: classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels. All entries should be unique (cannot contain duplicate classes). sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format
Attributes: classes_ : array of labels A copy of the classes parameter where provided, or otherwise, the sorted set of classes found when fitting.

Examples

from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer() mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) mlb.classes_ array([1, 2, 3])

mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) list(mlb.classes_) ['comedy', 'sci-fi', 'thriller']

Methods

fit(y) Fit the label sets binarizer, storing classes_
fit_transform(y) Fit the label sets binarizer and transform the given label sets
get_params([deep]) Get parameters for this estimator.
inverse_transform(yt) Transform the given indicator matrix into label sets
set_params(**params) Set the parameters of this estimator.
transform(y) Transform the given label sets

__init__(classes=None, sparse_output=False)[source]

fit(y)[source]

Fit the label sets binarizer, storing classes_

Parameters: y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: self : returns this MultiLabelBinarizer instance

fit_transform(y)[source]

Fit the label sets binarizer and transform the given label sets

Parameters: y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that y_indicator[i, j] = 1 iff classes_[j] is iny[i], and 0 otherwise.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters: deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any Parameter names mapped to their values.

inverse_transform(yt)[source]

Transform the given indicator matrix into label sets

Parameters: yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s.
Returns: y : list of tuples The set of labels for each sample such that y[i] consists ofclasses_[j] for each yt[i, j] == 1.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns: self

transform(y)[source]

Transform the given label sets

Parameters: y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that y_indicator[i, j] = 1 iff classes_[j] is iny[i], and 0 otherwise.