Faces recognition example using eigenfaces and SVMs (original) (raw)

Note

Go to the endto download the full example code. or to run this example in your browser via JupyterLite or Binder

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:https://www.kaggle.com/datasets/jessicali9530/lfw-dataset

Authors: The scikit-learn developers

SPDX-License-Identifier: BSD-3-Clause

Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)

n_samples, h, w = lfw_people.images.shape

for machine learning we use the 2 data directly (as relative pixel

positions info is ignored by this model)

X = lfw_people.data n_features = X.shape[1]

the label to predict is the id of the person

y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0]

print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes)

Total dataset size: n_samples: 1288 n_features: 1850 n_classes: 7

Split into a training set and a test and keep 25% of the data for testing.

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 )

scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled dataset): unsupervised feature extraction / dimensionality reduction

n_components = 150

print( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) ) t0 = time() pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0))

Extracting the top 150 eigenfaces from 966 faces done in 0.083s Projecting the input data on the eigenfaces orthonormal basis done in 0.005s

Train a SVM classification model

print("Fitting the classifier to the training set") t0 = time() param_grid = { "C": loguniform(1e3, 1e5), "gamma": loguniform(1e-4, 1e-1), } clf = RandomizedSearchCV( SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10 ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_)

Fitting the classifier to the training set done in 5.438s Best estimator found by grid search: SVC(C=np.float64(76823.03433306457), class_weight='balanced', gamma=np.float64(0.0034189458230957995))

Quantitative evaluation of the model quality on the test set

plot face recognition

Predicting people's names on the test set done in 0.051s precision recall f1-score support

 Ariel Sharon       0.75      0.69      0.72        13
 Colin Powell       0.72      0.87      0.79        60

Donald Rumsfeld 0.77 0.63 0.69 27 George W Bush 0.88 0.95 0.91 146 Gerhard Schroeder 0.95 0.80 0.87 25 Hugo Chavez 0.90 0.60 0.72 15 Tony Blair 0.93 0.75 0.83 36

     accuracy                           0.84       322
    macro avg       0.84      0.75      0.79       322
 weighted avg       0.85      0.84      0.84       322

Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1] true_name = target_names[y_test[i]].rsplit(" ", 1)[-1] return "predicted: %s\ntrue: %s" % (pred_name, true_name)

prediction_titles = [ title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0]) ]

plot_gallery(X_test, prediction_titles, h, w)

predicted: Bush true:      Bush, predicted: Bush true:      Bush, predicted: Blair true:      Blair, predicted: Bush true:      Bush, predicted: Bush true:      Bush, predicted: Bush true:      Bush, predicted: Schroeder true:      Schroeder, predicted: Powell true:      Powell, predicted: Bush true:      Bush, predicted: Bush true:      Bush, predicted: Bush true:      Bush, predicted: Bush true:      Bush

plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

eigenface 0, eigenface 1, eigenface 2, eigenface 3, eigenface 4, eigenface 5, eigenface 6, eigenface 7, eigenface 8, eigenface 9, eigenface 10, eigenface 11

Face recognition problem would be much more effectively solved by training convolutional neural networks but this family of models is outside of the scope of the scikit-learn library. Interested readers should instead try to use pytorch or tensorflow to implement such models.

Total running time of the script: (0 minutes 6.254 seconds)

Related examples

Gallery generated by Sphinx-Gallery