auc (original) (raw)
sklearn.metrics.auc(x, y)[source]#
Compute Area Under the Curve (AUC) using the trapezoidal rule.
This is a general function, given points on a curve. For computing the area under the ROC-curve, see roc_auc_score. For an alternative way to summarize a precision-recall curve, seeaverage_precision_score.
Parameters:
xarray-like of shape (n,)
X coordinates. These must be either monotonic increasing or monotonic decreasing.
yarray-like of shape (n,)
Y coordinates.
Returns:
aucfloat
Area Under the Curve.
Examples
import numpy as np from sklearn import metrics y = np.array([1, 1, 2, 2]) pred = np.array([0.1, 0.4, 0.35, 0.8]) fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) metrics.auc(fpr, tpr) np.float64(0.75)