balanced_accuracy_score (original) (raw)
sklearn.metrics.balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, adjusted=False)[source]#
Compute the balanced accuracy.
The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is defined as the average of recall obtained on each class.
The best value is 1 and the worst value is 0 when adjusted=False
.
Read more in the User Guide.
Added in version 0.20.
Parameters:
y_truearray-like of shape (n_samples,)
Ground truth (correct) target values.
y_predarray-like of shape (n_samples,)
Estimated targets as returned by a classifier.
sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
adjustedbool, default=False
When true, the result is adjusted for chance, so that random performance would score 0, while keeping perfect performance at a score of 1.
Returns:
balanced_accuracyfloat
Balanced accuracy score.
Notes
Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to accuracy_score with class-balanced sample weights, and shares desirable properties with the binary case. See the User Guide.
References
[1]
Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010). The balanced accuracy and its posterior distribution. Proceedings of the 20th International Conference on Pattern Recognition, 3121-24.
Examples
from sklearn.metrics import balanced_accuracy_score y_true = [0, 1, 0, 0, 1, 0] y_pred = [0, 1, 0, 0, 0, 1] balanced_accuracy_score(y_true, y_pred) 0.625