mean_tweedie_deviance (original) (raw)

sklearn.metrics.mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0)[source]#

Mean Tweedie deviance regression loss.

Read more in the User Guide.

Parameters:

y_truearray-like of shape (n_samples,)

Ground truth (correct) target values.

y_predarray-like of shape (n_samples,)

Estimated target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

powerfloat, default=0

Tweedie power parameter. Either power <= 0 or power >= 1.

The higher p the less weight is given to extreme deviations between true and predicted targets.

Returns:

lossfloat

A non-negative floating point value (the best value is 0.0).

Examples

from sklearn.metrics import mean_tweedie_deviance y_true = [2, 0, 1, 4] y_pred = [0.5, 0.5, 2., 2.] mean_tweedie_deviance(y_true, y_pred, power=1) 1.4260...