add_dummy_feature (original) (raw)
sklearn.preprocessing.add_dummy_feature(X, value=1.0)[source]#
Augment dataset with an additional dummy feature.
This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.
Parameters:
X{array-like, sparse matrix} of shape (n_samples, n_features)
Data.
valuefloat
Value to use for the dummy feature.
Returns:
X{ndarray, sparse matrix} of shape (n_samples, n_features + 1)
Same data with dummy feature added as first column.
Examples
from sklearn.preprocessing import add_dummy_feature add_dummy_feature([[0, 1], [1, 0]]) array([[1., 0., 1.], [1., 1., 0.]])