PrefixSpan — spark.findFrequentSequentialPatterns (original) (raw)
A parallel PrefixSpan algorithm to mine frequent sequential patterns.spark.findFrequentSequentialPatterns returns a complete set of frequent sequential patterns. For more details, seePrefixSpan.
Usage
spark.findFrequentSequentialPatterns(data, ...)
# S4 method for SparkDataFrame
spark.findFrequentSequentialPatterns(
data,
minSupport = 0.1,
maxPatternLength = 10L,
maxLocalProjDBSize = 32000000L,
sequenceCol = "sequence"
)Arguments
data
A SparkDataFrame.
...
additional argument(s) passed to the method.
minSupport
Minimal support level.
maxPatternLength
Maximal pattern length.
maxLocalProjDBSize
Maximum number of items (including delimiters used in the internal storage format) allowed in a projected database before local processing.
sequenceCol
name of the sequence column in dataset.
Value
A complete set of frequent sequential patterns in the input sequences of itemsets. The returned SparkDataFrame contains columns of sequence and corresponding frequency. The schema of it will be:sequence: ArrayType(ArrayType(T)), freq: integer where T is the item type
Note
spark.findFrequentSequentialPatterns(SparkDataFrame) since 3.0.0
Examples
if (FALSE) {
df <- createDataFrame(list(list(list(list(1L, 2L), list(3L))),
list(list(list(1L), list(3L, 2L), list(1L, 2L))),
list(list(list(1L, 2L), list(5L))),
list(list(list(6L)))),
schema = c("sequence"))
frequency <- spark.findFrequentSequentialPatterns(df, minSupport = 0.5, maxPatternLength = 5L,
maxLocalProjDBSize = 32000000L)
showDF(frequency)
}