FPGrowthModel (Spark 3.5.5 JavaDoc) (original) (raw)
Object
- org.apache.spark.ml.PipelineStage
- org.apache.spark.ml.Transformer
- org.apache.spark.ml.Model<FPGrowthModel>
* * org.apache.spark.ml.fpm.FPGrowthModel
- org.apache.spark.ml.Model<FPGrowthModel>
- org.apache.spark.ml.Transformer
All Implemented Interfaces:
java.io.Serializable, org.apache.spark.internal.Logging, FPGrowthParams, Params, HasPredictionCol, Identifiable, MLWritable
public class FPGrowthModel
extends Model<FPGrowthModel>
implements FPGrowthParams, MLWritable
Model fitted by FPGrowth.
param: freqItemsets frequent itemsets in the format of DataFrame("items"[Array], "freq"[Long])
See Also:
Serialized Form
Nested Class Summary
* ### Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging `org.apache.spark.internal.Logging.SparkShellLoggingFilter`
Method Summary
All Methods Static Methods Instance Methods Concrete Methods
Modifier and Type Method and Description Dataset<Row> associationRules() Get association rules fitted using the minConfidence. FPGrowthModel copy(ParamMap extra) Creates a copy of this instance with the same UID and some extra params. Dataset<Row> freqItemsets() Param itemsCol() Items column name. static FPGrowthModel load(String path) DoubleParam minConfidence() Minimal confidence for generating Association Rule. DoubleParam minSupport() Minimal support level of the frequent pattern. IntParam numPartitions() Number of partitions (at least 1) used by parallel FP-growth. Param predictionCol() Param for prediction column name. static MLReader<FPGrowthModel> read() FPGrowthModel setItemsCol(String value) FPGrowthModel setMinConfidence(double value) FPGrowthModel setPredictionCol(String value) String toString() Dataset<Row> transform(Dataset<?> dataset) The transform method first generates the association rules according to the frequent itemsets. StructType transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema. String uid() An immutable unique ID for the object and its derivatives. MLWriter write() Returns an MLWriter instance for this ML instance. * ### Methods inherited from class org.apache.spark.ml.[Model](../../../../../org/apache/spark/ml/Model.html "class in org.apache.spark.ml") `[hasParent](../../../../../org/apache/spark/ml/Model.html#hasParent--), [parent](../../../../../org/apache/spark/ml/Model.html#parent--), [setParent](../../../../../org/apache/spark/ml/Model.html#setParent-org.apache.spark.ml.Estimator-)` * ### Methods inherited from class org.apache.spark.ml.[Transformer](../../../../../org/apache/spark/ml/Transformer.html "class in org.apache.spark.ml") `[transform](../../../../../org/apache/spark/ml/Transformer.html#transform-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamMap-), [transform](../../../../../org/apache/spark/ml/Transformer.html#transform-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamPair-org.apache.spark.ml.param.ParamPair...-), [transform](../../../../../org/apache/spark/ml/Transformer.html#transform-org.apache.spark.sql.Dataset-org.apache.spark.ml.param.ParamPair-scala.collection.Seq-)` * ### Methods inherited from class org.apache.spark.ml.[PipelineStage](../../../../../org/apache/spark/ml/PipelineStage.html "class in org.apache.spark.ml") `[params](../../../../../org/apache/spark/ml/PipelineStage.html#params--)` * ### Methods inherited from class Object `equals, getClass, hashCode, notify, notifyAll, wait, wait, wait` * ### Methods inherited from interface org.apache.spark.ml.fpm.[FPGrowthParams](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html "interface in org.apache.spark.ml.fpm") `[getItemsCol](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#getItemsCol--), [getMinConfidence](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#getMinConfidence--), [getMinSupport](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#getMinSupport--), [getNumPartitions](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#getNumPartitions--), [validateAndTransformSchema](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#validateAndTransformSchema-org.apache.spark.sql.types.StructType-)` * ### Methods inherited from interface org.apache.spark.ml.param.shared.[HasPredictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html "interface in org.apache.spark.ml.param.shared") `[getPredictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html#getPredictionCol--)` * ### Methods inherited from interface org.apache.spark.ml.param.[Params](../../../../../org/apache/spark/ml/param/Params.html "interface in org.apache.spark.ml.param") `[clear](../../../../../org/apache/spark/ml/param/Params.html#clear-org.apache.spark.ml.param.Param-), [copyValues](../../../../../org/apache/spark/ml/param/Params.html#copyValues-T-org.apache.spark.ml.param.ParamMap-), [defaultCopy](../../../../../org/apache/spark/ml/param/Params.html#defaultCopy-org.apache.spark.ml.param.ParamMap-), [defaultParamMap](../../../../../org/apache/spark/ml/param/Params.html#defaultParamMap--), [explainParam](../../../../../org/apache/spark/ml/param/Params.html#explainParam-org.apache.spark.ml.param.Param-), [explainParams](../../../../../org/apache/spark/ml/param/Params.html#explainParams--), [extractParamMap](../../../../../org/apache/spark/ml/param/Params.html#extractParamMap--), [extractParamMap](../../../../../org/apache/spark/ml/param/Params.html#extractParamMap-org.apache.spark.ml.param.ParamMap-), [get](../../../../../org/apache/spark/ml/param/Params.html#get-org.apache.spark.ml.param.Param-), [getDefault](../../../../../org/apache/spark/ml/param/Params.html#getDefault-org.apache.spark.ml.param.Param-), [getOrDefault](../../../../../org/apache/spark/ml/param/Params.html#getOrDefault-org.apache.spark.ml.param.Param-), [getParam](../../../../../org/apache/spark/ml/param/Params.html#getParam-java.lang.String-), [hasDefault](../../../../../org/apache/spark/ml/param/Params.html#hasDefault-org.apache.spark.ml.param.Param-), [hasParam](../../../../../org/apache/spark/ml/param/Params.html#hasParam-java.lang.String-), [isDefined](../../../../../org/apache/spark/ml/param/Params.html#isDefined-org.apache.spark.ml.param.Param-), [isSet](../../../../../org/apache/spark/ml/param/Params.html#isSet-org.apache.spark.ml.param.Param-), [onParamChange](../../../../../org/apache/spark/ml/param/Params.html#onParamChange-org.apache.spark.ml.param.Param-), [paramMap](../../../../../org/apache/spark/ml/param/Params.html#paramMap--), [params](../../../../../org/apache/spark/ml/param/Params.html#params--), [set](../../../../../org/apache/spark/ml/param/Params.html#set-org.apache.spark.ml.param.Param-T-), [set](../../../../../org/apache/spark/ml/param/Params.html#set-org.apache.spark.ml.param.ParamPair-), [set](../../../../../org/apache/spark/ml/param/Params.html#set-java.lang.String-java.lang.Object-), [setDefault](../../../../../org/apache/spark/ml/param/Params.html#setDefault-org.apache.spark.ml.param.Param-T-), [setDefault](../../../../../org/apache/spark/ml/param/Params.html#setDefault-scala.collection.Seq-), [shouldOwn](../../../../../org/apache/spark/ml/param/Params.html#shouldOwn-org.apache.spark.ml.param.Param-)` * ### Methods inherited from interface org.apache.spark.ml.util.[MLWritable](../../../../../org/apache/spark/ml/util/MLWritable.html "interface in org.apache.spark.ml.util") `[save](../../../../../org/apache/spark/ml/util/MLWritable.html#save-java.lang.String-)` * ### Methods inherited from interface org.apache.spark.internal.Logging `$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize`
Method Detail
* #### read public static [MLReader](../../../../../org/apache/spark/ml/util/MLReader.html "class in org.apache.spark.ml.util")<[FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm")> read() * #### load public static [FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm") load(String path) * #### itemsCol public [Param](../../../../../org/apache/spark/ml/param/Param.html "class in org.apache.spark.ml.param")<String> itemsCol() Items column name. Default: "items" Specified by: `[itemsCol](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#itemsCol--)` in interface `[FPGrowthParams](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html "interface in org.apache.spark.ml.fpm")` Returns: (undocumented) * #### minSupport public [DoubleParam](../../../../../org/apache/spark/ml/param/DoubleParam.html "class in org.apache.spark.ml.param") minSupport() Minimal support level of the frequent pattern. \[0.0, 1.0\]. Any pattern that appears more than (minSupport \* size-of-the-dataset) times will be output in the frequent itemsets. Default: 0.3 Specified by: `[minSupport](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#minSupport--)` in interface `[FPGrowthParams](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html "interface in org.apache.spark.ml.fpm")` Returns: (undocumented) * #### numPartitions public [IntParam](../../../../../org/apache/spark/ml/param/IntParam.html "class in org.apache.spark.ml.param") numPartitions() Number of partitions (at least 1) used by parallel FP-growth. By default the param is not set, and partition number of the input dataset is used. Specified by: `[numPartitions](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#numPartitions--)` in interface `[FPGrowthParams](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html "interface in org.apache.spark.ml.fpm")` Returns: (undocumented) * #### minConfidence public [DoubleParam](../../../../../org/apache/spark/ml/param/DoubleParam.html "class in org.apache.spark.ml.param") minConfidence() Minimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation. Default: 0.8 Specified by: `[minConfidence](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html#minConfidence--)` in interface `[FPGrowthParams](../../../../../org/apache/spark/ml/fpm/FPGrowthParams.html "interface in org.apache.spark.ml.fpm")` Returns: (undocumented) * #### predictionCol public final [Param](../../../../../org/apache/spark/ml/param/Param.html "class in org.apache.spark.ml.param")<String> predictionCol() Param for prediction column name. Specified by: `[predictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html#predictionCol--)` in interface `[HasPredictionCol](../../../../../org/apache/spark/ml/param/shared/HasPredictionCol.html "interface in org.apache.spark.ml.param.shared")` Returns: (undocumented) * #### uid public String uid() An immutable unique ID for the object and its derivatives. Specified by: `[uid](../../../../../org/apache/spark/ml/util/Identifiable.html#uid--)` in interface `[Identifiable](../../../../../org/apache/spark/ml/util/Identifiable.html "interface in org.apache.spark.ml.util")` Returns: (undocumented) * #### freqItemsets public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> freqItemsets() * #### setMinConfidence public [FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm") setMinConfidence(double value) * #### setItemsCol public [FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm") setItemsCol(String value) * #### setPredictionCol public [FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm") setPredictionCol(String value) * #### associationRules public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> associationRules() Get association rules fitted using the minConfidence. Returns a dataframe with five fields, "antecedent", "consequent", "confidence", "lift" and "support", where "antecedent" and "consequent" are Array\[T\], whereas "confidence", "lift" and "support" are Double. Returns: (undocumented) * #### transform public [Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<[Row](../../../../../org/apache/spark/sql/Row.html "interface in org.apache.spark.sql")> transform([Dataset](../../../../../org/apache/spark/sql/Dataset.html "class in org.apache.spark.sql")<?> dataset) The transform method first generates the association rules according to the frequent itemsets. Then for each transaction in itemsCol, the transform method will compare its items against the antecedents of each association rule. If the record contains all the antecedents of a specific association rule, the rule will be considered as applicable and its consequents will be added to the prediction result. The transform method will summarize the consequents from all the applicable rules as prediction. The prediction column has the same data type as the input column(Array\[T\]) and will not contain existing items in the input column. The null values in the itemsCol columns are treated as empty sets. WARNING: internally it collects association rules to the driver and uses broadcast for efficiency. This may bring pressure to driver memory for large set of association rules. Specified by: `[transform](../../../../../org/apache/spark/ml/Transformer.html#transform-org.apache.spark.sql.Dataset-)` in class `[Transformer](../../../../../org/apache/spark/ml/Transformer.html "class in org.apache.spark.ml")` Parameters: `dataset` \- (undocumented) Returns: (undocumented) * #### transformSchema public [StructType](../../../../../org/apache/spark/sql/types/StructType.html "class in org.apache.spark.sql.types") transformSchema([StructType](../../../../../org/apache/spark/sql/types/StructType.html "class in org.apache.spark.sql.types") schema) Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during `transformSchema` and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by `Param.validate()`. Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. Specified by: `[transformSchema](../../../../../org/apache/spark/ml/PipelineStage.html#transformSchema-org.apache.spark.sql.types.StructType-)` in class `[PipelineStage](../../../../../org/apache/spark/ml/PipelineStage.html "class in org.apache.spark.ml")` Parameters: `schema` \- (undocumented) Returns: (undocumented) * #### copy public [FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm") copy([ParamMap](../../../../../org/apache/spark/ml/param/ParamMap.html "class in org.apache.spark.ml.param") extra) Description copied from interface: `[Params](../../../../../org/apache/spark/ml/param/Params.html#copy-org.apache.spark.ml.param.ParamMap-)` Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See `defaultCopy()`. Specified by: `[copy](../../../../../org/apache/spark/ml/param/Params.html#copy-org.apache.spark.ml.param.ParamMap-)` in interface `[Params](../../../../../org/apache/spark/ml/param/Params.html "interface in org.apache.spark.ml.param")` Specified by: `[copy](../../../../../org/apache/spark/ml/Model.html#copy-org.apache.spark.ml.param.ParamMap-)` in class `[Model](../../../../../org/apache/spark/ml/Model.html "class in org.apache.spark.ml")<[FPGrowthModel](../../../../../org/apache/spark/ml/fpm/FPGrowthModel.html "class in org.apache.spark.ml.fpm")>` Parameters: `extra` \- (undocumented) Returns: (undocumented) * #### write public [MLWriter](../../../../../org/apache/spark/ml/util/MLWriter.html "class in org.apache.spark.ml.util") write() Description copied from interface: `[MLWritable](../../../../../org/apache/spark/ml/util/MLWritable.html#write--)` Returns an `MLWriter` instance for this ML instance. Specified by: `[write](../../../../../org/apache/spark/ml/util/MLWritable.html#write--)` in interface `[MLWritable](../../../../../org/apache/spark/ml/util/MLWritable.html "interface in org.apache.spark.ml.util")` Returns: (undocumented) * #### toString public String toString() Specified by: `[toString](../../../../../org/apache/spark/ml/util/Identifiable.html#toString--)` in interface `[Identifiable](../../../../../org/apache/spark/ml/util/Identifiable.html "interface in org.apache.spark.ml.util")` Overrides: `toString` in class `Object`