textblob.formats — TextBlob 0.19.0 documentation (original) (raw)
"""File formats for training and testing data.
Includes a registry of valid file formats. New file formats can be added to the registry like so: ::
from textblob import formats
class PipeDelimitedFormat(formats.DelimitedFormat):
delimiter = "|"
formats.register("psv", PipeDelimitedFormat)
Once a format has been registered, classifiers will be able to read data files with that format. ::
from textblob.classifiers import NaiveBayesAnalyzer
with open("training_data.psv", "r") as fp:
cl = NaiveBayesAnalyzer(fp, format="psv")
"""
from future import annotations
import csv import json from collections import OrderedDict
from textblob.utils import is_filelike
DEFAULT_ENCODING = "utf-8"
[docs]
class BaseFormat:
"""Interface for format classes. Individual formats can decide on the
composition and meaning of **kwargs
.
:param File fp: A file-like object.
.. versionchanged:: 0.9.0
Constructor receives a file pointer rather than a file path.
"""
def __init__(self, fp, **kwargs):
pass
[docs] def to_iterable(self): """Return an iterable object from the data.""" raise NotImplementedError('Must implement a "to_iterable" method.')
[docs] @classmethod def detect(cls, stream: str): """Detect the file format given a filename. Return True if a stream is this file format.
.. versionchanged:: 0.9.0
Changed from a static method to a class method.
"""
raise NotImplementedError('Must implement a "detect" class method.')
[docs] class DelimitedFormat(BaseFormat): """A general character-delimited format."""
data: list[list[str]]
delimiter = ","
def __init__(self, fp, **kwargs):
BaseFormat.__init__(self, fp, **kwargs)
reader = csv.reader(fp, delimiter=self.delimiter)
self.data = [row for row in reader]
[docs] def to_iterable(self): """Return an iterable object from the data.""" return self.data
[docs] @classmethod def detect(cls, stream): """Return True if stream is valid.""" try: csv.Sniffer().sniff(stream, delimiters=cls.delimiter) return True except (csv.Error, TypeError): return False
[docs]
class CSV(DelimitedFormat):
"""CSV format. Assumes each row is of the form text,label
.
::
Today is a good day,pos
I hate this car.,pos
"""
delimiter = ","
[docs]
class TSV(DelimitedFormat):
"""TSV format. Assumes each row is of the form text\tlabel
."""
delimiter = "\t"
[docs] class JSON(BaseFormat): """JSON format.
Assumes that JSON is formatted as an array of objects with ``text`` and
``label`` properties.
::
[
{"text": "Today is a good day.", "label": "pos"},
{"text": "I hate this car.", "label": "neg"},
]
"""
def __init__(self, fp, **kwargs):
BaseFormat.__init__(self, fp, **kwargs)
self.dict = json.load(fp)
[docs] def to_iterable(self): """Return an iterable object from the JSON data.""" return [(d["text"], d["label"]) for d in self.dict]
[docs] @classmethod def detect(cls, stream: str | bytes | bytearray): """Return True if stream is valid JSON.""" try: json.loads(stream) return True except ValueError: return False
_registry = OrderedDict( [ ("csv", CSV), ("json", JSON), ("tsv", TSV), ] )
[docs]
def detect(fp, max_read=1024):
"""Attempt to detect a file's format, trying each of the supported
formats. Return the format class that was detected. If no format is
detected, return None
.
"""
if not is_filelike(fp):
return None
for Format in _registry.values():
if Format.detect(fp.read(max_read)):
fp.seek(0)
return Format
fp.seek(0)
return None
[docs] def get_registry(): """Return a dictionary of registered formats.""" return _registry
[docs] def register(name, format_class): """Register a new format.
:param str name: The name that will be used to refer to the format, e.g. 'csv'
:param type format_class: The format class to register.
"""
get_registry()[name] = format_class