[complex.numbers] (original) (raw)

26 Numerics library [numerics]

The header <complex> defines a class template, and numerous functions for representing and manipulating complex numbers.

The effect of instantiating the templatecomplexfor any type other than float, double, or long double is unspecified.

The specializationscomplex<float>,complex<double>, andcomplex<long double> are literal types.

If the result of a function is not mathematically defined or not in the range of representable values for its type, the behavior is undefined.

If z is an lvalue of type cv complex<T> then:

Moreover, if a is an expression of type cv complex<T>* and the expression a[i] is well-defined for an integer expression i, then:

26.4.1 Header synopsis [complex.syn]

namespace std {

template class complex;

template<> class complex; template<> class complex; template<> class complex;

template constexpr complex operator+(const complex&, const complex&); template constexpr complex operator+(const complex&, const T&); template constexpr complex operator+(const T&, const complex&);

template constexpr complex operator-(const complex&, const complex&); template constexpr complex operator-(const complex&, const T&); template constexpr complex operator-(const T&, const complex&);

template constexpr complex operator*(const complex&, const complex&); template constexpr complex operator*(const complex&, const T&); template constexpr complex operator*(const T&, const complex&);

template constexpr complex operator/(const complex&, const complex&); template constexpr complex operator/(const complex&, const T&); template constexpr complex operator/(const T&, const complex&);

template constexpr complex operator+(const complex&); template constexpr complex operator-(const complex&);

template constexpr bool operator==(const complex&, const complex&); template constexpr bool operator==(const complex&, const T&);

template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex&);

template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex&);

template constexpr T real(const complex&); template constexpr T imag(const complex&);

template T abs(const complex&); template T arg(const complex&); template constexpr T norm(const complex&);

template constexpr complex conj(const complex&); template complex proj(const complex&); template complex polar(const T&, const T& = T());

template complex acos(const complex&); template complex asin(const complex&); template complex atan(const complex&);

template complex acosh(const complex&); template complex asinh(const complex&); template complex atanh(const complex&);

template complex cos (const complex&); template complex cosh (const complex&); template complex exp (const complex&); template complex log (const complex&); template complex log10(const complex&);

template complex pow (const complex&, const T&); template complex pow (const complex&, const complex&); template complex pow (const T&, const complex&);

template complex sin (const complex&); template complex sinh (const complex&); template complex sqrt (const complex&); template complex tan (const complex&); template complex tanh (const complex&);

inline namespace literals { inline namespace complex_literals { constexpr complex operator""il(long double); constexpr complex operator""il(unsigned long long); constexpr complex operator""i(long double); constexpr complex operator""i(unsigned long long); constexpr complex operator""if(long double); constexpr complex operator""if(unsigned long long); } } }

26.4.2 Class template complex [complex]

namespace std { template class complex { public: using value_type = T;

constexpr complex(const T& re = T(), const T& im = T());
constexpr complex(const complex&);
template<class X> constexpr complex(const complex<X>&);

constexpr T real() const;
constexpr void real(T);
constexpr T imag() const;
constexpr void imag(T);

constexpr complex& operator= (const T&);
constexpr complex& operator+=(const T&);
constexpr complex& operator-=(const T&);
constexpr complex& operator*=(const T&);
constexpr complex& operator/=(const T&);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

}; }

The classcomplexdescribes an object that can store the Cartesian components,real()andimag(), of a complex number.

26.4.3 Specializations [complex.special]

namespace std { template<> class complex { public: using value_type = float;

constexpr complex(float re = 0.0f, float im = 0.0f);
constexpr complex(const complex<float>&) = default;
constexpr explicit complex(const complex<double>&);
constexpr explicit complex(const complex<long double>&);

constexpr float real() const;
constexpr void real(float);
constexpr float imag() const;
constexpr void imag(float);

constexpr complex& operator= (float);
constexpr complex& operator+=(float);
constexpr complex& operator-=(float);
constexpr complex& operator*=(float);
constexpr complex& operator/=(float);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};

template<> class complex { public: using value_type = double;

constexpr complex(double re = 0.0, double im = 0.0);
constexpr complex(const complex<float>&);
constexpr complex(const complex<double>&) = default;
constexpr explicit complex(const complex<long double>&);

constexpr double real() const;
constexpr void real(double);
constexpr double imag() const;
constexpr void imag(double);

constexpr complex& operator= (double);
constexpr complex& operator+=(double);
constexpr complex& operator-=(double);
constexpr complex& operator*=(double);
constexpr complex& operator/=(double);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};

template<> class complex { public: using value_type = long double;

constexpr complex(long double re = 0.0L, long double im = 0.0L);
constexpr complex(const complex<float>&);
constexpr complex(const complex<double>&);
constexpr complex(const complex<long double>&) = default;

constexpr long double real() const;
constexpr void real(long double);
constexpr long double imag() const;
constexpr void imag(long double);

constexpr complex& operator= (long double);
constexpr complex& operator+=(long double);
constexpr complex& operator-=(long double);
constexpr complex& operator*=(long double);
constexpr complex& operator/=(long double);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

}; }

26.4.4 Member functions [complex.members]

template<class T> constexpr complex(const T& re = T(), const T& im = T());

Postconditions: real() == re && imag() == im is true.

constexpr T real() const;

Returns:The value of the real component.

constexpr void real(T val);

Effects:Assigns val to the real component.

constexpr T imag() const;

Returns:The value of the imaginary component.

constexpr void imag(T val);

Effects:Assigns val to the imaginary component.

26.4.5 Member operators [complex.member.ops]

constexpr complex& operator+=(const T& rhs);

Effects:Adds the scalar value rhs to the real part of the complex value*thisand stores the result in the real part of*this, leaving the imaginary part unchanged.

constexpr complex& operator-=(const T& rhs);

Effects:Subtracts the scalar value rhs from the real part of the complex value*thisand stores the result in the real part of*this, leaving the imaginary part unchanged.

constexpr complex& operator*=(const T& rhs);

Effects:Multiplies the scalar value rhs by the complex value*thisand stores the result in*this.

constexpr complex& operator/=(const T& rhs);

Effects:Divides the scalar value rhs into the complex value*thisand stores the result in*this.

template<class X> constexpr complex& operator+=(const complex<X>& rhs);

Effects:Adds the complex value rhs to the complex value*thisand stores the sum in*this.

template<class X> constexpr complex& operator-=(const complex<X>& rhs);

Effects:Subtracts the complex value rhs from the complex value*thisand stores the difference in*this.

template<class X> constexpr complex& operator*=(const complex<X>& rhs);

Effects:Multiplies the complex value rhs by the complex value*thisand stores the product in*this.

template<class X> constexpr complex& operator/=(const complex<X>& rhs);

Effects:Divides the complex value rhs into the complex value*thisand stores the quotient in*this.

26.4.6 Non-member operations [complex.ops]

template<class T> constexpr complex<T> operator+(const complex<T>& lhs);

Returns: complex<T>(lhs).

template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs);template<class T> constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs);

Returns: complex<T>(lhs) += rhs.

template<class T> constexpr complex<T> operator-(const complex<T>& lhs);

Returns: complex<T>(-lhs.real(),-lhs.imag()).

template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs);template<class T> constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs);

Returns: complex<T>(lhs) -= rhs.

template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs);template<class T> constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs);

Returns: complex<T>(lhs) *= rhs.

template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs);template<class T> constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs);

Returns: complex<T>(lhs) /= rhs.

template<class T> constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs);template<class T> constexpr bool operator==(const complex<T>& lhs, const T& rhs);

Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag().

Remarks:The imaginary part is assumed to beT(), or 0.0, for theTarguments.

template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, complex<T>& x);

Preconditions:The input values are convertible toT.

Effects:Extracts a complex number x of the form:u,(u), or(u,v), whereuis the real part andvis the imaginary part ([istream.formatted]).

If bad input is encountered, callsis.setstate(ios_­base​::​failbit)(which may throwios_­base​::​​failure ([iostate.flags])).

Remarks:This extraction is performed as a series of simpler extractions.

Therefore, the skipping of whitespace is specified to be the same for each of the simpler extractions.

template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

Effects:Inserts the complex number xonto the stream o as if it were implemented as follows:

basic_ostringstream<charT, traits> s; s.flags(o.flags()); s.imbue(o.getloc()); s.precision(o.precision()); s << '(' << x.real() << "," << x.imag() << ')'; return o << s.str();

[ Note

:

In a locale in which comma is used as a decimal point character, the use of comma as a field separator can be ambiguous.

Insertingshowpoint into the output stream forces all outputs to show an explicit decimal point character; as a result, all inserted sequences of complex numbers can be extracted unambiguously.

end note

]

26.4.7 Value operations [complex.value.ops]

template<class T> constexpr T real(const complex<T>& x);

template<class T> constexpr T imag(const complex<T>& x);

template<class T> T abs(const complex<T>& x);

Returns:The magnitude of x.

template<class T> T arg(const complex<T>& x);

Returns:The phase angle of x, or atan2(imag(x), real(x)).

template<class T> constexpr T norm(const complex<T>& x);

Returns:The squared magnitude of x.

template<class T> constexpr complex<T> conj(const complex<T>& x);

Returns:The complex conjugate of x.

template<class T> complex<T> proj(const complex<T>& x);

Returns:The projection of x onto the Riemann sphere.

Remarks:Behaves the same as the C function cproj.

See also: ISO C 7.3.9.5

template<class T> complex<T> polar(const T& rho, const T& theta = T());

Preconditions: rho is non-negative and non-NaN.

theta is finite.

Returns:Thecomplexvalue corresponding to a complex number whose magnitude is rho and whose phase angle is theta.

26.4.8 Transcendentals [complex.transcendentals]

template<class T> complex<T> acos(const complex<T>& x);

Returns:The complex arc cosine of x.

Remarks:Behaves the same as the C function cacos.

See also: ISO C 7.3.5.1

template<class T> complex<T> asin(const complex<T>& x);

Returns:The complex arc sine of x.

Remarks:Behaves the same as the C function casin.

See also: ISO C 7.3.5.2

template<class T> complex<T> atan(const complex<T>& x);

Returns:The complex arc tangent of x.

Remarks:Behaves the same as the C function catan.

See also: ISO C 7.3.5.3

template<class T> complex<T> acosh(const complex<T>& x);

Returns:The complex arc hyperbolic cosine of x.

Remarks:Behaves the same as the C function cacosh.

See also: ISO C 7.3.6.1

template<class T> complex<T> asinh(const complex<T>& x);

Returns:The complex arc hyperbolic sine of x.

Remarks:Behaves the same as the C function casinh.

See also: ISO C 7.3.6.2

template<class T> complex<T> atanh(const complex<T>& x);

Returns:The complex arc hyperbolic tangent of x.

Remarks:Behaves the same as the C function catanh.

See also: ISO C 7.3.6.3

template<class T> complex<T> cos(const complex<T>& x);

Returns:The complex cosine of x.

template<class T> complex<T> cosh(const complex<T>& x);

Returns:The complex hyperbolic cosine of x.

template<class T> complex<T> exp(const complex<T>& x);

Returns:The complex base-e exponential of x.

template<class T> complex<T> log(const complex<T>& x);

Returns:The complex natural (base-e) logarithm of x.

For all x,imag(log(x)) lies in the interval [, π].

[ Note

:

The semantics of this function are intended to be the same in C++ as they are for clog in C.

end note

]

Remarks:The branch cuts are along the negative real axis.

template<class T> complex<T> log10(const complex<T>& x);

Returns:The complex common (base-10) logarithm of x, defined aslog(x) / log(10).

Remarks:The branch cuts are along the negative real axis.

template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);template<class T> complex<T> pow(const complex<T>& x, const T& y);template<class T> complex<T> pow(const T& x, const complex<T>& y);

Returns:The complex power of base x raised to the power, defined asexp(y * log(x)).

The value returned forpow(0, 0)is implementation-defined.

Remarks:The branch cuts are along the negative real axis.

template<class T> complex<T> sin(const complex<T>& x);

Returns:The complex sine of x.

template<class T> complex<T> sinh(const complex<T>& x);

Returns:The complex hyperbolic sine of x.

template<class T> complex<T> sqrt(const complex<T>& x);

Returns:The complex square root of x, in the range of the right half-plane.

[ Note

:

The semantics of this function are intended to be the same in C++ as they are for csqrt in C.

end note

]

Remarks:The branch cuts are along the negative real axis.

template<class T> complex<T> tan(const complex<T>& x);

Returns:The complex tangent of x.

template<class T> complex<T> tanh(const complex<T>& x);

Returns:The complex hyperbolic tangent of x.

26.4.9 Additional overloads [cmplx.over]

The following function templates shall have additional overloads:

arg norm conj proj imag real

where norm, conj, imag, and real are constexpr overloads.

The additional overloads shall be sufficient to ensure:

Function template pow shall have additional overloads sufficient to ensure, for a call with at least one argument of type complex<T>:

26.4.10 Suffixes for complex number literals [complex.literals]

This subclause describes literal suffixes for constructing complex number literals.

The suffixes i, il, and if create complex numbers of the types complex<double>, complex<long double>, andcomplex<float> respectively, with their imaginary part denoted by the given literal number and the real part being zero.

constexpr complex<long double> operator""il(long double d);constexpr complex<long double> operator""il(unsigned long long d);

Returns: complex<long double>{0.0L, static_­cast<long double>(d)}.

constexpr complex<double> operator""i(long double d);constexpr complex<double> operator""i(unsigned long long d);

Returns: complex<double>{0.0, static_­cast<double>(d)}.

constexpr complex<float> operator""if(long double d);constexpr complex<float> operator""if(unsigned long long d);

Returns: complex<float>{0.0f, static_­cast<float>(d)}.