[support.limits] (original) (raw)

17.3.5.1 numeric_­limits members [numeric.limits.members]

Each member function defined in this subclause is signal-safe.

static constexpr T min() noexcept;

For floating-point types with subnormal numbers, returns the minimum positive normalized value.

Meaningful for all specializations in whichis_­bounded != false, oris_­bounded == false && is_­signed == false.

static constexpr T max() noexcept;

Meaningful for all specializations in whichis_­bounded != false.

static constexpr T lowest() noexcept;

A finite value x such that there is no other finite value y where y < x.186

Meaningful for all specializations in which is_­bounded != false.

static constexpr int digits;

Number ofradixdigits that can be represented without change.

For integer types, the number of non-sign bits in the representation.

For floating-point types, the number of radix digits in the mantissa.187

static constexpr int digits10;

Number of base 10 digits that can be represented without change.188

Meaningful for all specializations in whichis_­bounded != false.

static constexpr int max_digits10;

Number of base 10 digits required to ensure that values which differ are always differentiated.

Meaningful for all floating-point types.

static constexpr bool is_signed;

true if the type is signed.

Meaningful for all specializations.

static constexpr bool is_integer;

true if the type is integer.

Meaningful for all specializations.

static constexpr bool is_exact;

true if the type uses an exact representation.

All integer types are exact, but not all exact types are integer.

For example, rational and fixed-exponent representations are exact but not integer.

Meaningful for all specializations.

static constexpr int radix;

For floating-point types, specifies the base or radix of the exponent representation (often 2).189

For integer types, specifies the base of the representation.190

Meaningful for all specializations.

static constexpr T epsilon() noexcept;

Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.191

Meaningful for all floating-point types.

static constexpr T round_error() noexcept;

Measure of the maximum rounding error.192

static constexpr int min_exponent;

Minimum negative integer such thatradixraised to the power of one less than that integer is a normalized floating-point number.193

Meaningful for all floating-point types.

static constexpr int min_exponent10;

Minimum negative integer such that 10 raised to that power is in the range of normalized floating-point numbers.194

Meaningful for all floating-point types.

static constexpr int max_exponent;

Maximum positive integer such thatradixraised to the power one less than that integer is a representable finite floating-point number.195

Meaningful for all floating-point types.

static constexpr int max_exponent10;

Maximum positive integer such that 10 raised to that power is in the range of representable finite floating-point numbers.196

Meaningful for all floating-point types.

static constexpr bool has_infinity;

true if the type has a representation for positive infinity.

Meaningful for all floating-point types.

Shall betruefor all specializations in whichis_­iec559 != false.

static constexpr bool has_quiet_NaN;

true if the type has a representation for a quiet (non-signaling) “Not a Number”.197

Meaningful for all floating-point types.

Shall betruefor all specializations in whichis_­iec559 != false.

static constexpr bool has_signaling_NaN;

true if the type has a representation for a signaling “Not a Number”.198

Meaningful for all floating-point types.

Shall betruefor all specializations in whichis_­iec559 != false.

static constexpr float_denorm_style has_denorm;

denorm_­presentif the type allows subnormal values (variable number of exponent bits)199,denorm_­absentif the type does not allow subnormal values, anddenorm_­indeterminateif it is indeterminate at compile time whether the type allows subnormal values.

Meaningful for all floating-point types.

static constexpr bool has_denorm_loss;

true if loss of accuracy is detected as a denormalization loss, rather than as an inexact result.200

static constexpr T infinity() noexcept;

Representation of positive infinity, if available.201

Meaningful for all specializations for whichhas_­infinity != false.

Required in specializations for whichis_­iec559 != false.

static constexpr T quiet_NaN() noexcept;

Representation of a quiet “Not a Number”, if available.202

Meaningful for all specializations for whichhas_­quiet_­NaN != false.

Required in specializations for whichis_­iec559 != false.

static constexpr T signaling_NaN() noexcept;

Representation of a signaling “Not a Number”, if available.203

Meaningful for all specializations for whichhas_­signaling_­NaN != false.

Required in specializations for whichis_­iec559 != false.

static constexpr T denorm_min() noexcept;

Minimum positive subnormal value.204

Meaningful for all floating-point types.

In specializations for whichhas_­denorm == false, returns the minimum positive normalized value.

static constexpr bool is_iec559;

true if and only if the type adheres to ISO/IEC/IEEE 60559.205

Meaningful for all floating-point types.

static constexpr bool is_bounded;

true if the set of values representable by the type is finite.206

[ Note

:

This member would be false for arbitrary precision types.

end note

]

Meaningful for all specializations.

static constexpr bool is_modulo;

true if the type is modulo.207

A type is modulo if, for any operation involving +, -, or* on values of that type whose result would fall outside the range[min(), max()], the value returned differs from the true value by an integer multiple of max() - min() + 1.

[ Example

:

is_­modulo is false for signed integer types ([basic.fundamental]) unless an implementation, as an extension to this document, defines signed integer overflow to wrap.

end example

]

Meaningful for all specializations.

static constexpr bool traps;

trueif, at the start of the program, there exists a value of the type that would cause an arithmetic operation using that value to trap.208

Meaningful for all specializations.

static constexpr bool tinyness_before;

trueif tinyness is detected before rounding.209

Meaningful for all floating-point types.

static constexpr float_round_style round_style;

The rounding style for the type.210

Meaningful for all floating-point types.

Specializations for integer types shall returnround_­toward_­zero.

17.3.5.2 numeric_­limits specializations [numeric.special]

All members shall be provided for all specializations.

However, many values are only required to be meaningful under certain conditions (for example,epsilon()is only meaningful ifis_­integerisfalse).

Any value that is not “meaningful” shall be set to 0 orfalse.

[ Example

:

namespace std { template<> class numeric_limits { public: static constexpr bool is_specialized = true;

static constexpr float min() noexcept { return 1.17549435E-38F; }
static constexpr float max() noexcept { return 3.40282347E+38F; }
static constexpr float lowest() noexcept { return -3.40282347E+38F; }

static constexpr int digits   = 24;
static constexpr int digits10 =  6;
static constexpr int max_digits10 =  9;

static constexpr bool is_signed  = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact   = false;

static constexpr int radix = 2;
static constexpr float epsilon() noexcept     { return 1.19209290E-07F; }
static constexpr float round_error() noexcept { return 0.5F; }

static constexpr int min_exponent   = -125;
static constexpr int min_exponent10 = - 37;
static constexpr int max_exponent   = +128;
static constexpr int max_exponent10 = + 38;

static constexpr bool has_infinity             = true;
static constexpr bool has_quiet_NaN            = true;
static constexpr bool has_signaling_NaN        = true;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss          = false;

static constexpr float infinity()      noexcept { return value; }
static constexpr float quiet_NaN()     noexcept { return value; }
static constexpr float signaling_NaN() noexcept { return value; }
static constexpr float denorm_min()    noexcept { return min(); }

static constexpr bool is_iec559  = true;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo  = false;
static constexpr bool traps      = true;
static constexpr bool tinyness_before = true;

static constexpr float_round_style round_style = round_to_nearest;

}; }

end example

]

The specialization forboolshall be provided as follows:

namespace std { template<> class numeric_limits { public: static constexpr bool is_specialized = true; static constexpr bool min() noexcept { return false; } static constexpr bool max() noexcept { return true; } static constexpr bool lowest() noexcept { return false; }

 static constexpr int  digits = 1;
 static constexpr int  digits10 = 0;
 static constexpr int  max_digits10 = 0;

 static constexpr bool is_signed = false;
 static constexpr bool is_integer = true;
 static constexpr bool is_exact = true;
 static constexpr int  radix = 2;
 static constexpr bool epsilon() noexcept { return 0; }
 static constexpr bool round_error() noexcept { return 0; }

 static constexpr int  min_exponent = 0;
 static constexpr int  min_exponent10 = 0;
 static constexpr int  max_exponent = 0;
 static constexpr int  max_exponent10 = 0;

 static constexpr bool has_infinity = false;
 static constexpr bool has_quiet_NaN = false;
 static constexpr bool has_signaling_NaN = false;
 static constexpr float_denorm_style has_denorm = denorm_absent;
 static constexpr bool has_denorm_loss = false;
 static constexpr bool infinity() noexcept { return 0; }
 static constexpr bool quiet_NaN() noexcept { return 0; }
 static constexpr bool signaling_NaN() noexcept { return 0; }
 static constexpr bool denorm_min() noexcept { return 0; }

 static constexpr bool is_iec559 = false;
 static constexpr bool is_bounded = true;
 static constexpr bool is_modulo = false;

 static constexpr bool traps = false;
 static constexpr bool tinyness_before = false;
 static constexpr float_round_style round_style = round_toward_zero;

}; }