[views] (original) (raw)
23.7.1 General [views.general]
The header defines the view span.
The header defines the class template mdspan and other facilities for interacting with these multidimensional views.
23.7.2 Contiguous access [views.contiguous]
23.7.2.2 Class template span [views.span]
23.7.2.2.1 Overview [span.overview]
A span is a view over a contiguous sequence of objects, the storage of which is owned by some other object.
All member functions of span have constant time complexity.
namespace std { template<class ElementType, size_t Extent = dynamic_extent> class span { public: using element_type = ElementType;using value_type = remove_cv_t<ElementType>;using size_type = size_t;using difference_type = ptrdiff_t;using pointer = element_type*;using const_pointer = const element_type*;using reference = element_type&;using const_reference = const element_type&;using iterator = implementation-defined; using const_iterator = std::const_iterator<iterator>;using reverse_iterator = std::reverse_iterator<iterator>;using const_reverse_iterator = std::const_iterator<reverse_iterator>;static constexpr size_type extent = Extent;constexpr span() noexcept;template<class It> constexpr explicit(extent != dynamic_extent) span(It first, size_type count);template<class It, class End> constexpr explicit(extent != dynamic_extent) span(It first, End last);template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept;template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept;template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r);constexpr explicit(extent != dynamic_extent) span(std::initializer_list<value_type> il);constexpr span(const span& other) noexcept = default;template<class OtherElementType, size_t OtherExtent> constexpr explicit(see below) span(const span<OtherElementType, OtherExtent>& s) noexcept;constexpr span& operator=(const span& other) noexcept = default;template<size_t Count> constexpr span<element_type, Count> first() const;template<size_t Count> constexpr span<element_type, Count> last() const;template<size_t Offset, size_t Count = dynamic_extent> constexpr span<element_type, _see below_> subspan() const;constexpr span<element_type, dynamic_extent> first(size_type count) const;constexpr span<element_type, dynamic_extent> last(size_type count) const;constexpr span<element_type, dynamic_extent> subspan( size_type offset, size_type count = dynamic_extent) const;constexpr size_type size() const noexcept;constexpr size_type size_bytes() const noexcept;constexpr bool empty() const noexcept;constexpr reference operator[](size_type idx) const;constexpr reference at(size_type idx) const; constexpr reference front() const;constexpr reference back() const;constexpr pointer data() const noexcept;constexpr iterator begin() const noexcept;constexpr iterator end() const noexcept;constexpr const_iterator cbegin() const noexcept { return begin(); } constexpr const_iterator cend() const noexcept { return end(); } constexpr reverse_iterator rbegin() const noexcept;constexpr reverse_iterator rend() const noexcept;constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); } constexpr const_reverse_iterator crend() const noexcept { return rend(); } private: pointer data_; size_type size_; };template<class It, class EndOrSize> span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>,maybe-static-ext<EndOrSize>>;template<class T, size_t N> span(T (&)[N]) -> span<T, N>;template<class T, size_t N> span(array<T, N>&) -> span<T, N>;template<class T, size_t N> span(const array<T, N>&) -> span<const T, N>;template<class R> span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;}
ElementType is required to be a complete object type that is not an abstract class type.
For a span s, any operation that invalidates a pointer in the range [s.data(), s.data() + s.size()) invalidates pointers, iterators, and references to elements of s.
23.7.2.2.2 Constructors, copy, and assignment [span.cons]
constexpr span() noexcept;
Constraints: Extent == dynamic_extent || Extent == 0 is true.
Postconditions: size() == 0 && data() == nullptr.
template<class It> constexpr explicit(extent != dynamic_extent) span(It first, size_type count);
Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
- is_convertible_v<U(*)[], element_type(*)[]> is true.
[Note 1:
The intent is to allow only qualification conversions of the iterator reference type to element_type.
— _end note_]
Preconditions:
- [first, first + count) is a valid range.
Hardened preconditions: If extent is not equal to dynamic_extent, then count == extent is true.
Effects: Initializes data_ with to_address(first) and_size__ with count.
template<class It, class End> constexpr explicit(extent != dynamic_extent) span(It first, End last);
Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
- is_convertible_v<U(*)[], element_type(*)[]> is true.
[Note 2:
The intent is to allow only qualification conversions of the iterator reference type to element_type.
— _end note_] - is_convertible_v<End, size_t> is false.
Preconditions:
- [first, last) is a valid range.
Hardened preconditions: If extent is not equal to dynamic_extent, then (last - first) == extent is true.
Effects: Initializes data_ with to_address(first) and_size__ with last - first.
Throws: When and what last - first throws.
template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept;template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept;
Constraints: Let U be remove_pointer_t<decltype(std::data(arr))>.
- extent == dynamic_extent || N == extent is true, and
- is_convertible_v<U(*)[], element_type(*)[]> is true.
[Note 3:
The intent is to allow only qualification conversions of the array element type to element_type.
— _end note_]
Effects: Constructs a span that is a view over the supplied array.
[Note 4:
type_identity_t affects class template argument deduction.
— _end note_]
Postconditions: size() == N && data() == std::data(arr) is true.
template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r);
Constraints: Let U be remove_reference_t<ranges::range_reference_t<R>>.
- Either R satisfies ranges::borrowed_range oris_const_v<element_type> is true.
- remove_cvref_t<R> is not a specialization of span.
- remove_cvref_t<R> is not a specialization of array.
- is_array_v<remove_cvref_t<R>> is false.
- is_convertible_v<U(*)[], element_type(*)[]> is true.
[Note 5:
The intent is to allow only qualification conversions of the range reference type to element_type.
— _end note_]
Preconditions:
- If is_const_v<element_type> is false,R models ranges::borrowed_range.
Hardened preconditions: If extent is not equal to dynamic_extent, then ranges::size(r) == extent is true.
Effects: Initializes data_ with ranges::data(r) and_size__ with ranges::size(r).
Throws: What and when ranges::data(r) and ranges::size(r) throw.
constexpr explicit(extent != dynamic_extent) span(std::initializer_list<value_type> il);
Constraints: is_const_v<element_type> is true.
Hardened preconditions: If extent is not equal to dynamic_extent, then il.size() == extent is true.
Effects: Initializes data_ with il.begin() and_size__ with il.size().
constexpr span(const span& other) noexcept = default;
Postconditions: other.size() == size() && other.data() == data().
template<class OtherElementType, size_t OtherExtent> constexpr explicit(_see below_) span(const span<OtherElementType, OtherExtent>& s) noexcept;
Constraints:
- extent == dynamic_extent || OtherExtent == dynamic_extent || extent == OtherExtent is true, and
- is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.
[Note 6:
The intent is to allow only qualification conversions of the OtherElementType to element_type.
— _end note_]
Hardened preconditions: If extent is not equal to dynamic_extent, then s.size() == extent is true.
Effects: Constructs a span that is a view over the range [s.data(), s.data() + s.size()).
Postconditions: size() == s.size() && data() == s.data().
Remarks: The expression inside explicit is equivalent to:extent != dynamic_extent && OtherExtent == dynamic_extent
constexpr span& operator=(const span& other) noexcept = default;
Postconditions: size() == other.size() && data() == other.data().
23.7.2.2.3 Deduction guides [span.deduct]
template<class It, class EndOrSize> span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>,[_maybe-static-ext_](#concept:maybe-static-ext "23.7.2.1 Header <span> synopsis [span.syn]")<EndOrSize>>;
template<class R> span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;
23.7.2.2.4 Subviews [span.sub]
template<size_t Count> constexpr span<element_type, Count> first() const;
Mandates: Count <= Extent is true.
Hardened preconditions: Count <= size() is true.
Effects: Equivalent to: return R{data(), Count};where R is the return type.
template<size_t Count> constexpr span<element_type, Count> last() const;
Mandates: Count <= Extent is true.
Hardened preconditions: Count <= size() is true.
Effects: Equivalent to: return R{data() + (size() - Count), Count};where R is the return type.
template<size_t Offset, size_t Count = dynamic_extent> constexpr span<element_type, _see below_> subspan() const;
Mandates: Offset <= Extent && (Count == dynamic_extent || Count <= Extent - Offset) is true.
Hardened preconditions: Offset <= size() && (Count == dynamic_extent || Count <= size() - Offset) is true.
Effects: Equivalent to:return span<ElementType, _see below_>( data() + Offset, Count != dynamic_extent ? Count : size() - Offset);
Remarks: The second template argument of the returned span type is:Count != dynamic_extent ? Count: (Extent != dynamic_extent ? Extent - Offset: dynamic_extent)
constexpr span<element_type, dynamic_extent> first(size_type count) const;
Hardened preconditions: count <= size() is true.
Effects: Equivalent to: return {data(), count};
constexpr span<element_type, dynamic_extent> last(size_type count) const;
Hardened preconditions: count <= size() is true.
Effects: Equivalent to: return {data() + (size() - count), count};
constexpr span<element_type, dynamic_extent> subspan( size_type offset, size_type count = dynamic_extent) const;
Hardened preconditions: offset <= size() && (count == dynamic_extent || count <= size() - offset) is true.
Effects: Equivalent to:return {data() + offset, count == dynamic_extent ? size() - offset : count};
23.7.2.2.5 Observers [span.obs]
constexpr size_type size() const noexcept;
Effects: Equivalent to: return size_;
constexpr size_type size_bytes() const noexcept;
Effects: Equivalent to: return size() * sizeof(element_type);
constexpr bool empty() const noexcept;
Effects: Equivalent to: return size() == 0;
23.7.2.2.6 Element access [span.elem]
constexpr reference operator[](size_type idx) const;
Hardened preconditions: idx < size() is true.
Returns: *(data() + idx).
constexpr reference at(size_type idx) const;
Returns: *(data() + idx).
Throws: out_of_range if idx >= size() is true.
constexpr reference front() const;
Hardened preconditions: empty() is false.
constexpr reference back() const;
Hardened preconditions: empty() is false.
Returns: *(data() + (size() - 1)).
constexpr pointer data() const noexcept;
23.7.2.2.7 Iterator support [span.iterators]
using iterator = _implementation-defined_;
All requirements on container iterators ([container.reqmts]) apply tospan::iterator as well.
constexpr iterator begin() const noexcept;
Returns: An iterator referring to the first element in the span.
If empty() is true, then it returns the same value as end().
constexpr iterator end() const noexcept;
Returns: An iterator which is the past-the-end value.
constexpr reverse_iterator rbegin() const noexcept;
Effects: Equivalent to: return reverse_iterator(end());
constexpr reverse_iterator rend() const noexcept;
Effects: Equivalent to: return reverse_iterator(begin());
23.7.2.3 Views of object representation [span.objectrep]
template<class ElementType, size_t Extent> span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_bytes(span<ElementType, Extent> s) noexcept;
Effects: Equivalent to: return R{reinterpret_cast<const byte*>(s.data()), s.size_bytes()};where R is the return type.
template<class ElementType, size_t Extent> span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_writable_bytes(span<ElementType, Extent> s) noexcept;
Constraints: is_const_v<ElementType> is false.
Effects: Equivalent to: return R{reinterpret_cast<byte*>(s.data()), s.size_bytes()};where R is the return type.
23.7.3 Multidimensional access [views.multidim]
23.7.3.1 Overview [mdspan.overview]
A multidimensional index space is a Cartesian product of integer intervals.
Each interval can be represented by a half-open range , where and are the lower and upper bounds of the dimension.
The rank of a multidimensional index space is the number of intervals it represents.
The size of a multidimensional index space is the product of for each dimension iif its rank is greater than 0, and 1 otherwise.
An integer r is a rank index of an index space Sif r is in the range .
A pack of integers idx is a multidimensional index in a multidimensional index space S(or representation thereof) if both of the following are true:
- sizeof...(idx) is equal to the rank of S, and
- for every rank index i of S, the value of idx is an integer in the interval of S.
23.7.3.3 Class template extents [mdspan.extents]
23.7.3.3.1 Overview [mdspan.extents.overview]
The class template extents represents a multidimensional index space of rank equal to sizeof...(Extents).
In ([views]),extents is used synonymously with multidimensional index space.
namespace std { template<class IndexType, size_t... Extents> class extents { public: using index_type = IndexType;using size_type = make_unsigned_t<index_type>;using rank_type = size_t;static constexpr rank_type rank() noexcept { return sizeof...(Extents); } static constexpr rank_type rank_dynamic() noexcept { return dynamic-index(rank()); } static constexpr size_t static_extent(rank_type) noexcept;constexpr index_type extent(rank_type) const noexcept;constexpr extents() noexcept = default;template<class OtherIndexType, size_t... OtherExtents> constexpr explicit(see below) extents(const extents<OtherIndexType, OtherExtents...>&) noexcept;template<class... OtherIndexTypes> constexpr explicit extents(OtherIndexTypes...) noexcept;template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(span<OtherIndexType, N>) noexcept;template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(const array<OtherIndexType, N>&) noexcept;template<class OtherIndexType, size_t... OtherExtents> friend constexpr bool operator==(const extents&,const extents<OtherIndexType, OtherExtents...>&) noexcept;constexpr size_t fwd-prod-of-extents(rank_type) const noexcept; constexpr size_t rev-prod-of-extents(rank_type) const noexcept; template<class OtherIndexType> static constexpr auto index-cast(OtherIndexType&&) noexcept; private: static constexpr rank_type dynamic-index(rank_type) noexcept; static constexpr rank_type dynamic-index-inv(rank_type) noexcept; array<index_type, rank_dynamic()> dynamic-extents{}; };template<class... Integrals> explicit extents(Integrals...) -> see below;}
Mandates:
- IndexType is a signed or unsigned integer type, and
- each element of Extents is either equal to dynamic_extent, or is representable as a value of type IndexType.
Each specialization of extents models regular and is trivially copyable.
Let be the element of Extents.
is a dynamic extent if it is equal to dynamic_extent, otherwise is a static extent.
Let be the value of _dynamic-extents_[dynamic-index(r)]if is a dynamic extent, otherwise .
The interval of the multidimensional index space represented by an extents object is .
23.7.3.3.2 Exposition-only helpers [mdspan.extents.expo]
static constexpr rank_type _dynamic-index_(rank_type i) noexcept;
Preconditions: i <= rank() is true.
Returns: The number of with for which is a dynamic extent.
static constexpr rank_type _dynamic-index-inv_(rank_type i) noexcept;
Preconditions: i < rank_dynamic() is true.
Returns: The minimum value of rsuch that dynamic-index(r + 1) == i + 1 is true.
constexpr size_t _fwd-prod-of-extents_(rank_type i) const noexcept;
Preconditions: i <= rank() is true.
Returns: If i > 0 is true, the product of extent(k) for all k in the range [0, i), otherwise 1.
constexpr size_t _rev-prod-of-extents_(rank_type i) const noexcept;
Preconditions: i < rank() is true.
Returns: If i + 1 < rank() is true, the product of extent(k)for all k in the range [i + 1, rank()), otherwise 1.
template<class OtherIndexType> static constexpr auto _index-cast_(OtherIndexType&& i) noexcept;
Effects:
- If OtherIndexType is an integral type other than bool, then equivalent to return i;,
- otherwise, equivalent to return static_cast<index_type>(i);.
[Note 1:
This function will always return an integral type other than bool.
Since this function's call sites are constrained on convertibility of OtherIndexType to index_type, integer-class types can use the static_cast branch without loss of precision.
— _end note_]
23.7.3.3.3 Constructors [mdspan.extents.cons]
template<class OtherIndexType, size_t... OtherExtents> constexpr explicit(_see below_) extents(const extents<OtherIndexType, OtherExtents...>& other) noexcept;
Constraints:
- sizeof...(OtherExtents) == rank() is true.
- ((OtherExtents == dynamic_extent || Extents == dynamic_extent || OtherExtents ==
Extents) && ...) is true.
Preconditions:
- other.extent(r) equals for each r for which is a static extent, and
- either
- sizeof...(OtherExtents) is zero, or
- other.extent(r) is representable as a value of type index_type for every rank index r of other.
Postconditions: *this == other is true.
Remarks: The expression inside explicit is equivalent to:(((Extents != dynamic_extent) && (OtherExtents == dynamic_extent)) || ... ) || (numeric_limits<index_type>::max() < numeric_limits<OtherIndexType>::max())
template<class... OtherIndexTypes> constexpr explicit extents(OtherIndexTypes... exts) noexcept;
Let N be sizeof...(OtherIndexTypes), and let exts_arr bearray<index_type, N>{static_cast<
index_type>(std::move(exts))...}.
Constraints:
- (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
- (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
- N == rank_dynamic() || N == rank() is true.
[Note 1:
One can construct extents from just dynamic extents, which are all the values getting stored, or from all the extents with a precondition.
— _end note_]
Preconditions:
- If N != rank_dynamic() is true,exts_arr[r] equals for each r for which is a static extent, and
- either
- sizeof...(exts) == 0 is true, or
- each element of exts is representable as a nonnegative value of type index_type.
Postconditions: *this == extents(exts_arr) is true.
template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(span<OtherIndexType, N> exts) noexcept;template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(const array<OtherIndexType, N>& exts) noexcept;
Constraints:
- is_convertible_v<const OtherIndexType&, index_type> is true,
- is_nothrow_constructible_v<index_type, const OtherIndexType&> is true, and
- N == rank_dynamic() || N == rank() is true.
Preconditions:
- If N != rank_dynamic() is true,exts[r] equals for each r for which is a static extent, and
- either
- N is zero, or
- exts[r] is representable as a nonnegative value of type index_type for every rank index r.
Effects:
- If N equals rank_dynamic(), for all d in the range [0, rank_dynamic()), direct-non-list-initializes _dynamic-extents_[d]with as_const(exts[d]).
- Otherwise, for all d in the range [0, rank_dynamic()), direct-non-list-initializes _dynamic-extents_[d]with as_const(exts[dynamic-index-inv(d)]).
template<class... Integrals> explicit extents(Integrals...) -> _see below_;
Constraints: (is_convertible_v<Integrals, size_t> && ...) is true.
Remarks: The deduced type is extents<size_t, maybe-static-ext<Integrals>...>.
23.7.3.3.4 Observers of the multidimensional index space [mdspan.extents.obs]
static constexpr size_t static_extent(rank_type i) noexcept;
Preconditions: i < rank() is true.
constexpr index_type extent(rank_type i) const noexcept;
Preconditions: i < rank() is true.
23.7.3.3.5 Comparison operators [mdspan.extents.cmp]
template<class OtherIndexType, size_t... OtherExtents> friend constexpr bool operator==(const extents& lhs,const extents<OtherIndexType, OtherExtents...>& rhs) noexcept;
Returns: true if lhs.rank() equals rhs.rank() and if lhs.extent(r) equals rhs.extent(r)for every rank index r of rhs, otherwise false.
23.7.3.3.6 Alias template dextents [mdspan.extents.dextents]
template<class IndexType, size_t Rank> using dextents = _see below_;
Result: A type E that is a specialization of extentssuch that E::rank() == Rank && E::rank() == E::rank_dynamic() is true, andE::index_type denotes IndexType.
23.7.3.3.7 Alias template dims [mdspan.extents.dims]
template<size_t Rank, class IndexType = size_t> using dims = _see below_;
Result: A type E that is a specialization of extentssuch that E::rank() == Rank && E::rank() == E::rank_dynamic() is true, andE::index_type denotes IndexType.
23.7.3.4 Layout mapping [mdspan.layout]
23.7.3.4.1 General [mdspan.layout.general]
- M denotes a layout mapping class.
- m denotes a (possibly const) value of type M.
- i and j are packs of (possibly const) integers that are multidimensional indices in m.extents() ([mdspan.overview]).
[Note 1:
The type of each element of the packs can be a different integer type.
— _end note_] - r is a (possibly const) rank index of typename M::extents_type.
- is a pack of (possibly const) integers for which sizeof...() == M::extents_type::rank() is true, the element is equal to 1, and all other elements are equal to 0.
In [mdspan.layout.reqmts] through [mdspan.layout.stride]:
- Let is-mapping-of be the exposition-only variable template defined as follows:template<class Layout, class Mapping> constexpr bool is-mapping-of = is_same_v<typename Layout::template mapping<typename Mapping::extents_type>, Mapping>;
- Let is-layout-left-padded-mapping-of be the exposition-only variable template defined as follows:template<class Mapping> constexpr bool is-layout-left-padded-mapping-of = see below; where is-layout-left-padded-mapping-of<Mapping> is trueif and only if Mapping denotes a specialization of layout_left_padded<S>::mappingfor some value S of type size_t.
- Let is-layout-right-padded-mapping-of be the exposition-only variable template defined as follows:template<class Mapping> constexpr bool is-layout-right-padded-mapping-of = see below; where is-layout-right-padded-mapping-of<Mapping> is trueif and only if Mapping denotes a specialization of layout_right_padded<S>::mappingfor some value S of type size_t.
- For nonnegative integers x and y, let denote
- y if x is zero,
- otherwise, the least multiple of x that is greater than or equal to y.
23.7.3.4.2 Requirements [mdspan.layout.reqmts]
A type M meets the layout mapping requirements if
- M models copyable and equality_comparable,
- is_nothrow_move_constructible_v<M> is true,
- is_nothrow_move_assignable_v<M> is true,
- is_nothrow_swappable_v<M> is true, and
- the following types and expressions are well-formed and have the specified semantics.
Result: A type that is a specialization of extents.
Result: typename M::extents_type::index_type.
Result: typename M::extents_type::rank_type.
Result: A type MP that meets the layout mapping policy requirements ([mdspan.layout.policy.reqmts]) and for which is-mapping-of<MP, M> is true.
Result: const typename M::extents_type&
Result: typename M::index_type
Returns: A nonnegative integer less than numeric_limits<typename M::index_type>::max() and less than or equal to numeric_limits<size_t>::max().
m(i...) == m(static_cast<typename M::index_type>(i)...)
Result: typename M::index_type
Returns: If the size of the multidimensional index space m.extents() is 0, then 0, else 1 plus the maximum value of m(i...) for all i.
Returns: true only if for every i and j where (i != j || ...) is true,m(i...) != m(j...) is true.
[Note 1:
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is unique.
— _end note_]
Returns: true only if for all k in the range [0, m.required_span_size())there exists an i such that m(i...) equals k.
[Note 2:
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is exhaustive.
— _end note_]
Returns: true only if for every rank index r of m.extents() there exists an integer such that, for all i where is a multidimensional index in m.extents() ([mdspan.overview]),m((i + )...) - m(i...) equals .
[Note 3:
This implies that for a strided layout.
— _end note_]
[Note 4:
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is strided.
— _end note_]
Preconditions: m.is_strided() is true.
Result: typename M::index_type
Returns: as defined in m.is_strided() above.
Returns: true only if m.is_unique() is truefor all possible objects m of type M.
[Note 5:
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is unique.
— _end note_]
M::is_always_exhaustive()
Returns: true only if m.is_exhaustive() is truefor all possible objects m of type M.
[Note 6:
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is exhaustive.
— _end note_]
Returns: true only if m.is_strided() is truefor all possible objects m of type M.
[Note 7:
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is strided.
— _end note_]
23.7.3.4.3 Layout mapping policy requirements [mdspan.layout.policy.reqmts]
A type MP meets the layout mapping policy requirements if for a type E that is a specialization of extents,MP::mapping<E> is valid and denotes a type Xthat meets the layout mapping requirements ([mdspan.layout.reqmts]), and for which the qualified-id X::layout_type is valid and denotes the type MP and the qualified-id X::extents_type denotes E.
23.7.3.4.4 Layout mapping policies [mdspan.layout.policy.overview]
namespace std { struct layout_left { template<class Extents> class mapping;};struct layout_right { template<class Extents> class mapping;};struct layout_stride { template<class Extents> class mapping;};template<size_t PaddingValue> struct layout_left_padded { template<class Extents> class mapping;};template<size_t PaddingValue> struct layout_right_padded { template<class Extents> class mapping;};}
Each of layout_left, layout_right, and layout_stride, as well as each specialization oflayout_left_padded and layout_right_padded, meets the layout mapping policy requirements and is a trivially copyable type.
Furthermore,is_trivially_default_constructible_v<T> is truefor any such type T.
23.7.3.4.5 Class template layout_left::mapping [mdspan.layout.left]
23.7.3.4.5.1 Overview [mdspan.layout.left.overview]
layout_left provides a layout mapping where the leftmost extent has stride 1, and strides increase left-to-right as the product of extents.
namespace std { template<class Extents> class layout_left::mapping { public: using extents_type = Extents;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using layout_type = layout_left;constexpr mapping() noexcept = default;constexpr mapping(const mapping&) noexcept = default;constexpr mapping(const extents_type&) noexcept;template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>&) noexcept;template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>&) noexcept;template<class LayoutLeftPaddedMapping> constexpr explicit(!is_convertible_v<typename LayoutLeftPaddedMapping::extents_type, extents_type>) mapping(const LayoutLeftPaddedMapping&) noexcept;template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>&);constexpr mapping& operator=(const mapping&) noexcept = default;constexpr const extents_type& extents() const noexcept { return extents_; } constexpr index_type required_span_size() const noexcept;template<class... Indices> constexpr index_type operator()(Indices...) const noexcept;static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept;template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;private: extents_type extents_{}; template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl(SliceSpecifiers...) const -> see below;template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...);} };}
If Extents is not a specialization of extents, then the program is ill-formed.
layout_left::mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents()is representable as a value of type typename Extents::index_type.
23.7.3.4.5.2 Constructors [mdspan.layout.left.cons]
constexpr mapping(const extents_type& e) noexcept;
Preconditions: The size of the multidimensional index space eis representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with e.
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>& other) noexcept;
Constraints:
- extents_type::rank() <= 1 is true, and
- is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class LayoutLeftPaddedMapping> constexpr explicit(!is_convertible_v<typename LayoutLeftPaddedMapping::extents_type, extents_type>) mapping(const LayoutLeftPaddedMapping&) noexcept;
Constraints:
- is-layout-left-padded-mapping-of<LayoutLeftPaddedMapping> is true.
- is_constructible_v<extents_type, typename LayoutLeftPaddedMapping::extents_type>
is true.
Mandates: If
- Extents::rank() is greater than one,
- Extents::static_extent(0) does not equal dynamic_extent, and
- LayoutLeftPaddedMapping::_static-padding-stride_does not equal dynamic_extent,
then Extents::static_extent(0) equalsLayoutLeftPaddedMapping::static-padding-stride.
Preconditions:
- If extents_type::rank() > 1 is true, then other.stride(1) equals other.extents(0).
- other.required_span_size() is representable as a value of type index_type.
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
- If extents_type::rank() > 0 is true, then for all r in the range [0, extents_type::rank()),other.stride(r) equalsother.extents().fwd-prod-of-extents(r), and
- other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
23.7.3.4.5.3 Observers [mdspan.layout.left.obs]
constexpr index_type required_span_size() const noexcept;
Returns: extents().fwd-prod-of-extents(extents_type::rank()).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
- sizeof...(Indices) == extents_type::rank() is true,
- (is_convertible_v<Indices, index_type> && ...) is true, and
- (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type::index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such thatis_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to:return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr index_type stride(rank_type i) const;
Constraints: extents_type::rank() > 0 is true.
Preconditions: i < extents_type::rank() is true.
Returns: extents().fwd-prod-of-extents(i).
template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
Constraints: extents_type::rank() == OtherExtents::rank() is true.
Effects: Equivalent to: return x.extents() == y.extents();
23.7.3.4.6 Class template layout_right::mapping [mdspan.layout.right]
23.7.3.4.6.1 Overview [mdspan.layout.right.overview]
layout_right provides a layout mapping where the rightmost extent is stride 1, and strides increase right-to-left as the product of extents.
namespace std { template<class Extents> class layout_right::mapping { public: using extents_type = Extents;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using layout_type = layout_right;constexpr mapping() noexcept = default;constexpr mapping(const mapping&) noexcept = default;constexpr mapping(const extents_type&) noexcept;template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>&) noexcept;template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>&) noexcept;template<class LayoutRightPaddedMapping> constexpr explicit(!is_convertible_v<typename LayoutRightPaddedMapping::extents_type, extents_type>) mapping(const LayoutRightPaddedMapping&) noexcept;template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>&) noexcept;constexpr mapping& operator=(const mapping&) noexcept = default;constexpr const extents_type& extents() const noexcept { return extents_; } constexpr index_type required_span_size() const noexcept;template<class... Indices> constexpr index_type operator()(Indices...) const noexcept;static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept;template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;private: extents_type extents_{}; template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl(SliceSpecifiers...) const -> see below;template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...);} };}
If Extents is not a specialization of extents, then the program is ill-formed.
layout_right::mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents()is representable as a value of type typename Extents::index_type.
23.7.3.4.6.2 Constructors [mdspan.layout.right.cons]
constexpr mapping(const extents_type& e) noexcept;
Preconditions: The size of the multidimensional index space e is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with e.
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>& other) noexcept;
Constraints:
- extents_type::rank() <= 1 is true, and
- is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class LayoutRightPaddedMapping> constexpr explicit(!is_convertible_v<typename LayoutRightPaddedMapping::extents_type, extents_type>) mapping(const LayoutRightPaddedMapping&) noexcept;
Constraints:
- is-layout-right-padded-mapping-of<LayoutRightPaddedMapping>is true.
- is_constructible_v<extents_type, typename LayoutRightPaddedMapping::extents_-
type>is true.
Mandates: If
- Extents::rank() is greater than one,
- Extents::static_extent(Extents::rank() - 1)does not equal dynamic_extent, and
- LayoutRightPaddedMapping::_static-padding-stride_does not equal dynamic_extent,
then Extents::static_extent(Extents::rank() - 1) equalsLayoutRightPaddedMapping::static-padding-stride.
Preconditions:
- If extents_type::rank() > 1 is true, then other.stride(extents_type::rank() - 2)
equalsother.extents().extent(extents_type::rank() - 1). - other.required_span_size() is representable as a value of type index_type.
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
- If extents_type::rank() > 0 is true, then for all r in the range [0, extents_type::rank()),other.stride(r) equalsother.extents()._rev-prod-of-extents_(r).
Effects: Direct-non-list-initializes extents_ with other.extents().
23.7.3.4.6.3 Observers [mdspan.layout.right.obs]
index_type required_span_size() const noexcept;
Returns: extents().fwd-prod-of-extents(extents_type::rank()).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
- sizeof...(Indices) == extents_type::rank() is true,
- (is_convertible_v<Indices, index_type> && ...) is true, and
- (is_nothrow_constructible_v<index_type, Indices> && ...) istrue.
Preconditions: extents_type::index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such thatis_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to:return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr index_type stride(rank_type i) const noexcept;
Constraints: extents_type::rank() > 0 is true.
Preconditions: i < extents_type::rank() is true.
Returns: extents().rev-prod-of-extents(i).
template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
Constraints: extents_type::rank() == OtherExtents::rank() is true.
Effects: Equivalent to: return x.extents() == y.extents();
23.7.3.4.7 Class template layout_stride::mapping [mdspan.layout.stride]
23.7.3.4.7.1 Overview [mdspan.layout.stride.overview]
layout_stride provides a layout mapping where the strides are user-defined.
namespace std { template<class Extents> class layout_stride::mapping { public: using extents_type = Extents;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using layout_type = layout_stride;private: static constexpr rank_type rank_ = extents_type::rank(); public: constexpr mapping() noexcept;constexpr mapping(const mapping&) noexcept = default;template<class OtherIndexType> constexpr mapping(const extents_type&, span<OtherIndexType, _rank__>) noexcept;template<class OtherIndexType> constexpr mapping(const extents_type&, const array<OtherIndexType, _rank__>&) noexcept;template<class StridedLayoutMapping> constexpr explicit(see below) mapping(const StridedLayoutMapping&) noexcept;constexpr mapping& operator=(const mapping&) noexcept = default;constexpr const extents_type& extents() const noexcept { return extents_; } constexpr array<index_type, _rank__> strides() const noexcept { return strides_; } constexpr index_type required_span_size() const noexcept;template<class... Indices> constexpr index_type operator()(Indices...) const noexcept;static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return false; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept;static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type i) const noexcept { return _strides__[i]; } template<class OtherMapping> friend constexpr bool operator==(const mapping&, const OtherMapping&) noexcept;private: extents_type extents_{}; array<index_type, _rank__> strides_{}; template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl(SliceSpecifiers...) const -> see below;template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...);} };}
If Extents is not a specialization of extents, then the program is ill-formed.
layout_stride::mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents()is representable as a value of type typename Extents::index_type.
23.7.3.4.7.2 Exposition-only helpers [mdspan.layout.stride.expo]
Let REQUIRED-SPAN-SIZE(e, strides) be:
- 1, if e.rank() == 0 is true,
- otherwise 0, if the size of the multidimensional index space e is 0,
- otherwise 1 plus the sum of products of(e.extent(r) - 1) andextents_type::index-cast(strides[r]) for all r in the range [0, e.rank()).
Let OFFSET(m) be:
- m(), if e.rank() == 0 is true,
- otherwise 0, if the size of the multidimensional index space e is 0,
- otherwise m(z...) for a pack of integers zthat is a multidimensional index in m.extents() and each element of z equals 0.
Let is-extents be the exposition-only variable template defined as follows:template<class T> constexpr bool is-extents = false; template<class IndexType, size_t... Args> constexpr bool is-extents<extents<IndexType, Args...>> = true;
Let layout-mapping-alike be the exposition-only concept defined as follows:template<class M> concept layout-mapping-alike = requires { requires is-extents<typename M::extents_type>;{ M::is_always_strided() } -> same_as<bool>;{ M::is_always_exhaustive() } -> same_as<bool>;{ M::is_always_unique() } -> same_as<bool>; bool_constant<M::is_always_strided()>::value; bool_constant<M::is_always_exhaustive()>::value; bool_constant<M::is_always_unique()>::value;};
[Note 1:
This concept checks that the functionsM::is_always_strided(),M::is_always_exhaustive(), andM::is_always_unique() exist, are constant expressions, and have a return type of bool.
— _end note_]
23.7.3.4.7.3 Constructors [mdspan.layout.stride.cons]
constexpr mapping() noexcept;
Preconditions: layout_right::mapping<extents_type>().required_span_size()is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with extents_type(), and for all d in the range [0, rank_), direct-non-list-initializes _strides__[d] withlayout_right::mapping<extents_type>().stride(d).
template<class OtherIndexType> constexpr mapping(const extents_type& e, span<OtherIndexType, _rank_> s) noexcept;template<class OtherIndexType> constexpr mapping(const extents_type& e, const array<OtherIndexType, _rank_>& s) noexcept;
Constraints:
- is_convertible_v<const OtherIndexType&, index_type> is true, and
- is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.
Preconditions:
- The result of converting s[i] to index_typeis greater than 0for all i in the range [0, _rank__).
- If rank_ is greater than 0, then there exists a permutation P of the integers in the range [0, rank_), such that s[] >= s[] * e.extent(p) is truefor all i in the range [1, rank__), where is the element of P.
[_Note 1:
For layout_stride, this condition is necessary and sufficient for is_unique() to be true.
— _end note_]
Effects: Direct-non-list-initializes extents_ with e, and for all d in the range [0, rank_), direct-non-list-initializes strides_[d] with as_const(s[d]).
template<class StridedLayoutMapping> constexpr explicit(_see below_) mapping(const StridedLayoutMapping& other) noexcept;
Constraints:
- layout-mapping-alike<StridedLayoutMapping> is satisfied.
- is_constructible_v<extents_type, typename StridedLayoutMapping::extents_type> is
true. - StridedLayoutMapping::is_always_unique() is true.
- StridedLayoutMapping::is_always_strided() is true.
Preconditions:
- StridedLayoutMapping meets the layout mapping requirements ([mdspan.layout.reqmts]),
- other.stride(r) > 0 is truefor every rank index r of extents(),
- other.required_span_size() is representable as a value of type index_type ([basic.fundamental]), and
- OFFSET(other) == 0 is true.
Effects: Direct-non-list-initializes extents_ with other.extents(), and for all d in the range [0, rank_), direct-non-list-initializes _strides__[d]with other.stride(d).
Remarks: The expression inside explicit is equivalent to:!(is_convertible_v<typename StridedLayoutMapping::extents_type, extents_type> && (is-mapping-of<layout_left, StridedLayoutMapping> || is-mapping-of<layout_right, StridedLayoutMapping> || is-layout-left-padded-mapping-of<StridedLayoutMapping> || is-layout-right-padded-mapping-of<StridedLayoutMapping> || is-mapping-of<layout_stride, StridedLayoutMapping>))
23.7.3.4.7.4 Observers [mdspan.layout.stride.obs]
constexpr index_type required_span_size() const noexcept;
Returns: REQUIRED-SPAN-SIZE(extents(), strides_).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
- sizeof...(Indices) == rank_ is true,
- (is_convertible_v<Indices, index_type> && ...) is true, and
- (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type::index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such thatis_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to:return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr bool is_exhaustive() const noexcept;
Returns:
- Otherwise, true if there is a permutation P of the integers in the range [0, _rank__)such that stride() equals 1, andstride() equals stride() * extents().extent()for i in the range [1, _rank__), where is the element of P.
template<class OtherMapping> friend constexpr bool operator==(const mapping& x, const OtherMapping& y) noexcept;
Constraints:
- layout-mapping-alike<OtherMapping> is satisfied.
- rank_ == OtherMapping::extents_type::rank() is true.
- OtherMapping::is_always_strided() is true.
Preconditions: OtherMapping meets the layout mapping requirements ([mdspan.layout.policy.reqmts]).
Returns: true if x.extents() == y.extents() is true,OFFSET(y) == 0 is true, and each of x.stride(r) == y.stride(r) is truefor r in the range [0, x.extents().rank()).
Otherwise, false.
23.7.3.4.8 Class template layout_left_padded::mapping [mdspan.layout.leftpad]
23.7.3.4.8.1 Overview [mdspan.layout.leftpad.overview]
layout_left_padded provides a layout mapping that behaves like layout_left::mapping, except that the padding stride stride(1)can be greater than or equal to extent(0).
namespace std { template<size_t PaddingValue> template<class Extents> class layout_left_padded<PaddingValue>::mapping { public: static constexpr size_t padding_value = PaddingValue;using extents_type = Extents;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using layout_type = layout_left_padded<PaddingValue>;private: static constexpr size_t rank_ = extents_type::rank(); static constexpr size_t first-static-extent = extents_type::static_extent(0);static constexpr size_t static-padding-stride = see below; public: constexpr mapping() noexcept : mapping(extents_type{}) {} constexpr mapping(const mapping&) noexcept = default;constexpr mapping(const extents_type&);template<class OtherIndexType> constexpr mapping(const extents_type&, OtherIndexType);template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>&);template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>&);template<class LayoutLeftPaddedMapping> constexpr explicit(see below) mapping(const LayoutLeftPaddedMapping&);template<class LayoutRightPaddedMapping> constexpr explicit(see below) mapping(const LayoutRightPaddedMapping&) noexcept;constexpr mapping& operator=(const mapping&) noexcept = default;constexpr const extents_type& extents() const noexcept { return extents_; } constexpr array<index_type, rank_> strides() const noexcept;constexpr index_type required_span_size() const noexcept;template<class... Indices> constexpr index_type operator()(Indices...) const noexcept;static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept;static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept;static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept;template<class LayoutLeftPaddedMapping> friend constexpr bool operator==(const mapping&, const LayoutLeftPaddedMapping&) noexcept;private: index_type stride-1 = static-padding-stride; extents_type extents_{}; template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl(SliceSpecifiers...) const -> see below;template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping(const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...);} };}
If Extents is not a specialization of extents, then the program is ill-formed.
layout_left_padded::mapping<E> is a trivially copyable type that models regular for each E.
Throughout [mdspan.layout.leftpad], let P_rank be the following size rank_ parameter pack of size_t values:
- the empty parameter pack, if rank_ equals zero;
- otherwise, 0zu, if rank_ equals one;
- otherwise, the parameter pack 0zu, 1zu, …, _rank__- 1.
Mandates:
- If rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents()is representable as a value of type index_type.
- padding_value is representable as a value of type index_type.
- If
- rank_ is greater than one,
- padding_value does not equal dynamic_extent, and
- first-static-extent does not equal dynamic_extent,
then LEAST-MULTIPLE-AT-LEAST(padding_value, first-static-extent)is representable as a value of type size_t, and is representable as a value of type index_type.
- If
- rank_ is greater than one,
- padding_value does not equal dynamic_extent, and
- extents_type::static_extent(k) does not equal dynamic_extentfor all k in the range [0, extents_type::rank()),
then the product of_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.static_extent(0)) and all values ext.static_extent(k)with k in the range of [1, _rank__) is representable as a value of type size_t, and is representable as a value of type index_type.
23.7.3.4.8.2 Exposition-only members [mdspan.layout.leftpad.expo]
static constexpr size_t _static-padding-stride_ = _see below_;
The value is
- 0, if rank_ equals zero or one;
- otherwise, dynamic_extent, if padding_value or first-static-extent equalsdynamic_extent;
- otherwise, the size_t value which is_LEAST-MULTIPLE-AT-LEAST_(padding_value, first-static-extent).
index_type _stride-1_ = _static-padding-stride_;
Recommended practice: Implementations should not store this value if static-padding-stride is not dynamic_extent.
[Note 1:
Using extents<index_type, _static-padding-stride_> instead ofindex_type as the type of stride-1 would achieve this.
— _end note_]
23.7.3.4.8.3 Constructors [mdspan.layout.leftpad.cons]
constexpr mapping(const extents_type& ext);
Preconditions:
- The size of the multidimensional index space ext is representable as a value of type index_type.
- If rank_ is greater than one andpadding_value does not equal dynamic_extent, then LEAST-MULTIPLE-AT-LEAST(padding_value, ext.extent(0))is representable as a value of type index_type.
- If rank_ is greater than one andpadding_value does not equal dynamic_extent, then the product of_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.extent(0)) and all values ext.extent(k)with k in the range of [1, _rank__) is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with ext; and
- if rank_ is greater than one, direct-non-list-initializes stride-1
- with ext.extent(0) if padding_value is dynamic_extent,
- otherwise with_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.extent(0)).
template<class OtherIndexType> constexpr mapping(const extents_type& ext, OtherIndexType pad);
Constraints:
- is_convertible_v<OtherIndexType, index_type> is true.
- is_nothrow_constructible_v<index_type, OtherIndexType> is true.
Preconditions:
- pad is representable as a value of type index_type.
- extents_type::index-cast(pad) is greater than zero.
- If rank_ is greater than one, then LEAST-MULTIPLE-AT-LEAST(pad, ext.extent(0))is representable as a value of type index_type.
- If rank_ is greater than one, then the product of_LEAST-MULTIPLE-AT-LEAST_(pad, ext.extent(0)) and all values ext.extent(k)with k in the range of [1, _rank__) is representable as a value of type index_type.
- If padding_value is not equal to dynamic_extent,padding_value equals extents_type::index-cast(pad).
Effects: Direct-non-list-initializes extents_ with ext, and if rank_ is greater than one, direct-non-list-initializes stride-1 with_LEAST-MULTIPLE-AT-LEAST_(pad, ext.extent(0)).
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Mandates: If OtherExtents::rank() is greater than 1, then(static-padding-stride == dynamic_extent) || (OtherExtents::static_extent(0) == dynamic_extent) || (static-padding-stride == OtherExtents::static_extent(0)) is true.
Preconditions:
- If extents_type::rank() > 1 is true andpadding_value == dynamic_extent is false, then other.stride(1) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extents().extent(0))) and
- other.required_span_size() is representable as a value of type index_type.
Effects: Equivalent to mapping(other.extents()).
template<class OtherExtents> constexpr explicit(rank_ > 0) mapping(const layout_stride::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
- If rank_ is greater than 1 andpadding_value does not equal dynamic_extent, then other.stride(1) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extents().extent(0)))
- If rank_ is greater than 0, then other.stride(0) equals 1.
- If rank_ is greater than 2, then for all r in the range [2, rank_),other.stride(r) equals(other.extents().fwd-prod-of-extents(r) / other.extents().extent(0)) * other.stride(1)
- other.required_span_size() is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with other.extents() and
- if rank_ is greater than one, direct-non-list-initializes stride-1 withother.stride(1).
template<class LayoutLeftPaddedMapping> constexpr explicit(_see below_) mapping(const LayoutLeftPaddedMapping& other);
Constraints:
- is-layout-left-padded-mapping-of<LayoutLeftPaddedMapping>is true.
- is_constructible_v<extents_type, typename LayoutLeftPaddedMapping::extents_type>
is true.
Mandates: If rank_ is greater than 1, thenpadding_value == dynamic_extent ||LayoutLeftPaddedMapping::padding_value == dynamic_extent ||padding_value == LayoutLeftPaddedMapping::padding_valueis true.
- If rank_ is greater than 1 andpadding_value does not equal dynamic_extent, then other.stride(1) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extent(0)))
- other.required_span_size() is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with other.extents() and
- if rank_ is greater than one, direct-non-list-initializes stride-1 with other.stride(1).
Remarks: The expression inside explicit is equivalent to:rank_> 1 && (padding_value != dynamic_extent || LayoutLeftPaddedMapping::padding_value == dynamic_extent)
template<class LayoutRightPaddedMapping> constexpr explicit(_see below_) mapping(const LayoutRightPaddedMapping& other) noexcept;
Constraints:
- is-layout-right-padded-mapping-of<LayoutRightPaddedMapping>is true or
is-mapping-of<layout_right, LayoutRightPaddedMapping>is true. - rank_ equals zero or one.
- is_constructible_v<extents_type, typename LayoutRightPaddedMapping::extents_-
type>is true.
Preconditions: other.required_span_size() is representable as a value of type index_type.
Effects: Direct-non-list-initializes extents_ with other.extents().
Remarks: The expression inside explicit is equivalent to:!is_convertible_v<typename LayoutRightPaddedMapping::extents_type, extents_type>
[Note 1:
Neither the input mapping nor the mapping to be constructed uses the padding stride in the rank-0 or rank-1 case, so the padding stride does not affect either the constraints or the preconditions.
— _end note_]
23.7.3.4.8.4 Observers [mdspan.layout.leftpad.obs]
constexpr array<index_type, _rank_> strides() const noexcept;
Returns: array<index_type, _rank__>({stride(P_rank)...}).
constexpr index_type required_span_size() const noexcept;
Returns:
- 0 if the multidimensional index space extents_ is empty,
- otherwise, *this(((extents_(P_rank) - index_type(1))...)) + 1.
template<class... Indices> constexpr size_t operator()(Indices... idxs) const noexcept;
Constraints:
- sizeof...(Indices) == rank_ is true.
- (is_convertible_v<Indices, index_type> && ...) is true.
- (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type::index-cast(idxs) is a multidimensional index in extents() ([mdspan.overview]).
Returns: ((static_cast<index_type>(idxs) * stride(P_rank)) + ... + 0).
static constexpr bool is_always_exhaustive() noexcept;
Returns:
- If rank_ equals zero or one, then true;
- otherwise, if neither static-padding-stride nor _first-static-extent_equal dynamic_extent, then static-padding-stride == first-static-extent;
- otherwise, false.
constexpr bool is_exhaustive() const noexcept;
Returns: true if rank_ equals zero or one; otherwise, extents_.extent(0) == stride(1).
constexpr index_type stride(rank_type r) const noexcept;
Preconditions: r is smaller than rank_.
Returns:
- If r equals zero: 1;
- otherwise, if r equals one: stride-1;
- otherwise, the product of stride-1 and all values extents_.extent(k) with k in the range [1, r).
template<class LayoutLeftPaddedMapping> friend constexpr bool operator==(const mapping& x, const LayoutLeftPaddedMapping& y) noexcept;
Constraints:
- is-layout-left-padded-mapping-of<LayoutLeftPaddedMapping>is true.
- LayoutLeftPaddedMapping::extents_type::rank() == rank_ is true.
Returns: true if x.extents() == y.extents() is true and_rank__ < 2 || x.stride(1) == y.
stride(1) is true.
Otherwise, false.
23.7.3.4.9 Class template layout_right_padded::mapping [mdspan.layout.rightpad]
23.7.3.4.9.1 Overview [mdspan.layout.rightpad.overview]
layout_right_padded provides a layout mapping that behaves like layout_right::mapping, except that the padding stride stride(extents_type::rank() - 2)can be greater than or equal toextents_type::extent(extents_type::rank() - 1).
namespace std { template<size_t PaddingValue> template<class Extents> class layout_right_padded<PaddingValue>::mapping { public: static constexpr size_t padding_value = PaddingValue;using extents_type = Extents;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using layout_type = layout_right_padded<PaddingValue>;private: static constexpr size_t rank_ = extents_type::rank(); static constexpr size_t last-static-extent = extents_type::static_extent(rank_ - 1);static constexpr size_t static-padding-stride = see below; public: constexpr mapping() noexcept : mapping(extents_type{}) {} constexpr mapping(const mapping&) noexcept = default;constexpr mapping(const extents_type&);template<class OtherIndexType> constexpr mapping(const extents_type&, OtherIndexType);template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>&);template<class OtherExtents> constexpr explicit(rank_ > 0) mapping(const layout_stride::mapping<OtherExtents>&);template<class LayoutRightPaddedMapping> constexpr explicit(see below) mapping(const LayoutRightPaddedMapping&);template<class LayoutLeftPaddedMapping> constexpr explicit(see below) mapping(const LayoutLeftPaddedMapping&) noexcept;constexpr mapping& operator=(const mapping&) noexcept = default;constexpr const extents_type& extents() const noexcept { return extents_; } constexpr array<index_type, rank_> strides() const noexcept;constexpr index_type required_span_size() const noexcept;template<class... Indices> constexpr index_type operator()(Indices...) const noexcept;static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept;static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept;static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept;template<class LayoutRightPaddedMapping> friend constexpr bool operator==(const mapping&, const LayoutRightPaddedMapping&) noexcept;private: index_type stride-rm2 = static-padding-stride; extents_type extents_{}; template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl(SliceSpecifiers...) const -> see below;template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping(const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...);} };}
If Extents is not a specialization of extents, then the program is ill-formed.
layout_right_padded::mapping<E> is a trivially copyable type that models regular for each E.
Throughout [mdspan.layout.rightpad], let P_rank be the following size rank_ parameter pack of size_t values:
- the empty parameter pack, if rank_ equals zero;
- otherwise, 0zu, if rank_ equals one;
- otherwise, the parameter pack 0zu, 1zu, …, _rank__- 1.
Mandates:
- If rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents()is representable as a value of type index_type.
- padding_value is representable as a value of type index_type.
- If
- rank_ is greater than one,
- padding_value does not equal dynamic_extent, and
- last-static-extent does not equal dynamic_extent,
then LEAST-MULTIPLE-AT-LEAST(padding_value, last-static-extent)is representable as a value of type size_t, and is representable as a value of type index_type.
- If
- rank_ is greater than one,
- padding_value does not equal dynamic_extent, and
- extents_type::static_extent(k) does not equal dynamic_extentfor all k in the range [0, _rank__),
then the product of_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.static_extent(_rank__ - 1)) and all values ext.static_extent(k)with k in the range of [0, _rank__ - 1) is representable as a value of type size_t, and is representable as a value of type index_type.
23.7.3.4.9.2 Exposition-only members [mdspan.layout.rightpad.expo]
static constexpr size_t _static-padding-stride_ = _see below_;
The value is
- 0, if rank_ equals zero or one;
- otherwise, dynamic_extent, if padding_value or last-static-extent equalsdynamic_extent;
- otherwise, the size_t value which is_LEAST-MULTIPLE-AT-LEAST_(padding_value, last-static-extent).
index_type _stride-rm2_ = _static-padding-stride_;
Recommended practice: Implementations should not store this value if static-padding-stride is not dynamic_extent.
[Note 1:
Using extents<index_type, _static-padding-stride_>instead of index_type as the type of _stride-rm2_would achieve this.
— _end note_]
23.7.3.4.9.3 Constructors [mdspan.layout.rightpad.cons]
constexpr mapping(const extents_type& ext);
Preconditions:
- The size of the multidimensional index space extis representable as a value of type index_type.
- If rank_ is greater than one andpadding_value does not equal dynamic_extent, then LEAST-MULTIPLE-AT-LEAST(padding_value, ext.extent(rank_ - 1))is representable as a value of type index_type.
- If rank_ is greater than one andpadding_value does not equal dynamic_extent, then the product of_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.extent(rank_ - 1)) and all values ext.extent(k)with k in the range of [0, _rank__ - 1) is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with ext; and
- if rank_ is greater than one, direct-non-list-initializes stride-rm2
- with ext.extent(rank_ - 1)if padding_value is dynamic_extent,
- otherwise with_LEAST-MULTIPLE-AT-LEAST_(padding_value, ext.extent(rank_ - 1)).
template<class OtherIndexType> constexpr mapping(const extents_type& ext, OtherIndexType pad);
Constraints:
- is_convertible_v<OtherIndexType, index_type> is true.
- is_nothrow_constructible_v<index_type, OtherIndexType> is true.
Preconditions:
- pad is representable as a value of type index_type.
- extents_type::index-cast(pad) is greater than zero.
- If rank_ is greater than one, then LEAST-MULTIPLE-AT-LEAST(pad, ext.extent(rank_ - 1))is representable as a value of type index_type.
- If rank_ is greater than one, then the product of_LEAST-MULTIPLE-AT-LEAST_(pad, ext.extent(rank_ - 1)) and all values ext.extent(k)with k in the range of [0, _rank__ - 1) is representable as a value of type index_type.
- If padding_value is not equal to dynamic_extent,padding_value equals extents_type::index-cast(pad).
Effects: Direct-non-list-initializes extents_ with ext, and if rank_ is greater than one, direct-non-list-initializes stride-rm2 with_LEAST-MULTIPLE-AT-LEAST_(pad, ext.extent(rank_ - 1)).
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Mandates: If OtherExtents::rank() is greater than 1, then(static-padding-stride == dynamic_extent) || (OtherExtents::static_extent(rank_ - 1) == dynamic_extent) || (static-padding-stride == OtherExtents::static_extent(rank_ - 1)) is true.
Preconditions:
- If rank_ > 1 is true andpadding_value == dynamic_extent is false, thenother.stride(
rank_ - 2) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extents().extent(rank_ - 1))) and - other.required_span_size() is representable as a value of type index_type.
Effects: Equivalent to mapping(other.extents()).
template<class OtherExtents> constexpr explicit(rank_ > 0) mapping(const layout_stride::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
- If rank_ is greater than 1 andpadding_value does not equal dynamic_extent, then other.stride(rank_ - 2) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extents().extent(rank_ - 1)))
- If rank_ is greater than 0, then other.stride(rank_ - 1) equals 1.
- If rank_ is greater than 2, then for all r in the range [0, rank_ - 2),other.stride(r) equals(other.extents().rev-prod-of-extents(r) / other.extents().extent(rank_ - 1)) * other.stride(rank_ - 2)
- other.required_span_size() is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with other.extents(); and
- if rank_ is greater than one, direct-non-list-initializes _stride-rm2_with other.stride(rank_ - 2).
template<class LayoutRightPaddedMapping> constexpr explicit(_see below_) mapping(const LayoutRightPaddedMapping& other);
Constraints:
- is-layout-right-padded-mapping-of<LayoutRightPaddedMapping>is true.
- is_constructible_v<extents_type, typename LayoutRightPaddedMapping::extents_-
type>is true.
Mandates: If rank_ is greater than 1, thenpadding_value == dynamic_extent ||LayoutRightPaddedMapping::padding_value == dynamic_extent ||padding_value == LayoutRightPaddedMapping::padding_valueis true.
Preconditions:
- If rank_ is greater than 1 andpadding_value does not equal dynamic_extent, then other.stride(rank_ - 2) equals_LEAST-MULTIPLE-AT-LEAST_(padding_value, extents_type::index-cast(other.extent(rank_ - 1)))
- other.required_span_size() is representable as a value of type index_type.
Effects:
- Direct-non-list-initializes extents_ with other.extents(); and
- if rank_ is greater than one, direct-non-list-initializes _stride-rm2_with other.stride(rank_ - 2).
Remarks: The expression inside explicit is equivalent to:rank_ > 1 && (padding_value != dynamic_extent || LayoutRightPaddedMapping::padding_value == dynamic_extent)
template<class LayoutLeftPaddedMapping> constexpr explicit(_see below_) mapping(const LayoutLeftPaddedMapping& other) noexcept;
Constraints:
- is-layout-left-padded-mapping-of<LayoutLeftPaddedMapping>is true or
is-mapping-of<layout_left, LayoutLeftPaddedMapping>is true. - rank_ equals zero or one.
- is_constructible_v<extents_type, typename LayoutLeftPaddedMapping::extents_type>
is true.
Preconditions: other.required_span_size() is representable as a value of type index_type.
Effects: Direct-non-list-initializes extents_ with other.extents().
Remarks: The expression inside explicit is equivalent to:!is_convertible_v<typename LayoutLeftPaddedMapping::extents_type, extents_type>
[Note 1:
Neither the input mapping nor the mapping to be constructed uses the padding stride in the rank-0 or rank-1 case, so the padding stride affects neither the constraints nor the preconditions.
— _end note_]
23.7.3.4.9.4 Observers [mdspan.layout.rightpad.obs]
constexpr array<index_type, _rank_> strides() const noexcept;
Returns: array<index_type, _rank__>(stride(P_rank)...).
constexpr index_type required_span_size() const noexcept;
Returns: 0 if the multidimensional index space extents_ is empty, otherwise *this(((extents_(P_rank) - index_type(1))...)) + 1.
template<class... Indices> constexpr size_t operator()(Indices... idxs) const noexcept;
Constraints:
- sizeof...(Indices) == rank_ is true.
- (is_convertible_v<Indices, index_type> && ...) is true.
- (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type::index-cast(idxs) is a multidimensional index in extents() ([mdspan.overview]).
Returns: ((static_cast<index_type>(idxs) * stride(P_rank)) + ... + 0).
static constexpr bool is_always_exhaustive() noexcept;
Returns:
- If rank_ equals zero or one, then true;
- otherwise, if neither static-padding-stride nor _last-static-extent_equal dynamic_extent, then static-padding-stride == last-static-extent;
- otherwise, false.
constexpr bool is_exhaustive() const noexcept;
Returns: true if rank_ equals zero or one; otherwise,extents_.extent(rank_ - 1) == stride(rank_ - 2)
constexpr index_type stride(rank_type r) const noexcept;
Preconditions: r is smaller than rank_.
Returns:
- If r equals rank_ - 1: 1;
- otherwise, if r equals rank_ - 2: stride-rm2;
- otherwise, the product of stride-rm2 and all values extents_.extent(k)with k in the range of [r + 1, _rank__ - 1).
template<class LayoutRightPaddedMapping> friend constexpr bool operator==(const mapping& x, const LayoutRightPaddedMapping& y) noexcept;
Constraints:
- is-layout-right-padded-mapping-of<LayoutRightPaddedMapping>is true.
- LayoutRightPaddedMapping::extents_type::rank() == _rank__is true.
Returns: true if x.extents() == y.extents() is true and_rank__ < 2 || x.stride(rank_ - 2) == y.stride(rank_ - 2) is true.
Otherwise, false.
23.7.3.5 Accessor policy [mdspan.accessor]
23.7.3.5.1 General [mdspan.accessor.general]
An accessor policy defines types and operations by which a reference to a single object is created from an abstract data handle to a number of such objects and an index.
A range of indices is an accessible range of a given data handle and an accessor if, for each i in the range, the accessor policy's access function produces a valid reference to an object.
- A denotes an accessor policy.
- a denotes a value of type A or const A.
- p denotes a value of type A::data_handle_type or const A::data_handle_type.
[Note 1:
The type A::data_handle_type need not be dereferenceable.
— _end note_] - n, i, and j each denote values of type size_t.
23.7.3.5.2 Requirements [mdspan.accessor.reqmts]
A type A meets the accessor policy requirements if
- A models copyable,
- is_nothrow_move_constructible_v<A> is true,
- is_nothrow_move_assignable_v<A> is true,
- is_nothrow_swappable_v<A> is true, and
- the following types and expressions are well-formed and have the specified semantics.
Result: A complete object type that is not an abstract class type.
typename A::data_handle_type
Result: A type that models copyable, and for which is_nothrow_move_constructible_v<A::data_handle_type> is true,is_nothrow_move_assignable_v<A::data_handle_type> is true, andis_nothrow_swappable_v<A::data_handle_type> is true.
[Note 1:
The type of data_handle_type need not be element_type*.
— _end note_]
Result: A type that modelscommon_reference_with<A::reference&&, A::element_type&>.
[Note 2:
The type of reference need not be element_type&.
— _end note_]
typename A::offset_policy
Result: A type OP such that:
- OP meets the accessor policy requirements,
- constructible_from<OP, const A&> is modeled, and
- is_same_v<typename OP::element_type, typename A::element_type> is true.
Remarks: The expression is equality preserving.
[Note 3:
Concrete accessor policies can impose preconditions for their access function.
However, they might not.
For example, an accessor wherep is span<A::element_type, dynamic_extent> andaccess(p, i) returns p[i % p.size()]does not need to impose a precondition on i.
— _end note_]
Result: A::offset_policy::data_handle_type
Returns: q such that for b being A::offset_policy(a), and any integer n for which [0, n) is an accessible range of p and a:
- is an accessible range of q and b; and
- b.access(q, j) provides access to the same element as a.access(p, i + j), for every j in the range .
Remarks: The expression is equality-preserving.
23.7.3.5.3 Class template default_accessor [mdspan.accessor.default]
23.7.3.5.3.1 Overview [mdspan.accessor.default.overview]
namespace std { template<class ElementType> struct default_accessor { using offset_policy = default_accessor;using element_type = ElementType;using reference = ElementType&;using data_handle_type = ElementType*;constexpr default_accessor() noexcept = default;template<class OtherElementType> constexpr default_accessor(default_accessor<OtherElementType>) noexcept;constexpr reference access(data_handle_type p, size_t i) const noexcept;constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept;};}
default_accessor meets the accessor policy requirements.
ElementType is required to be a complete object type that is neither an abstract class type nor an array type.
Each specialization of default_accessor is a trivially copyable type that models semiregular.
is an accessible range for an object p of type data_handle_type and an object of type default_accessorif and only if [p, p + n) is a valid range.
23.7.3.5.3.2 Members [mdspan.accessor.default.members]
template<class OtherElementType> constexpr default_accessor(default_accessor<OtherElementType>) noexcept {}
Constraints: is_convertible_v<OtherElementType(*)[], element_type(*)[]>is true.
constexpr reference access(data_handle_type p, size_t i) const noexcept;
Effects: Equivalent to: return p[i];
constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept;
Effects: Equivalent to: return p + i;
23.7.3.5.4 Class template aligned_accessor [mdspan.accessor.aligned]
23.7.3.5.4.1 Overview [mdspan.accessor.aligned.overview]
namespace std { template<class ElementType, size_t ByteAlignment> struct aligned_accessor { using offset_policy = default_accessor<ElementType>;using element_type = ElementType;using reference = ElementType&;using data_handle_type = ElementType*;static constexpr size_t byte_alignment = ByteAlignment;constexpr aligned_accessor() noexcept = default;template<class OtherElementType, size_t OtherByteAlignment> constexpr aligned_accessor( aligned_accessor<OtherElementType, OtherByteAlignment>) noexcept;template<class OtherElementType> constexpr explicit aligned_accessor(default_accessor<OtherElementType>) noexcept;template<class OtherElementType> constexpr operator default_accessor<OtherElementType>() const noexcept;constexpr reference access(data_handle_type p, size_t i) const noexcept;constexpr typename offset_policy::data_handle_type offset( data_handle_type p, size_t i) const noexcept;};}
Mandates:
- byte_alignment is a power of two, and
- byte_alignment >= alignof(ElementType) is true.
aligned_accessor meets the accessor policy requirements.
ElementType is required to be a complete object type that is neither an abstract class type nor an array type.
Each specialization of aligned_accessor is a trivially copyable type that models semiregular.
[0, n) is an accessible range for an object p of type data_handle_type and an object of type aligned_accessor if and only if
- [p, p + n) is a valid range, and,
- if n is greater than zero, then is_sufficiently_aligned<byte_alignment>(p) is true.
[Example 1:
The following function computeuses is_sufficiently_aligned to check whether a given mdspan with default_accessor has a data handle with sufficient alignment to be used with aligned_accessor<float, 4 * sizeof(float)>.
If so, the function dispatches to a function compute_using_fourfold_overalignmentthat requires fourfold over-alignment of arrays, but can therefore use hardware-specific instructions, such as four-wide SIMD (Single Instruction Multiple Data) instructions.
Otherwise, compute dispatches to a possibly less optimized function compute_without_requiring_overalignmentthat has no over-alignment requirement.
void compute_using_fourfold_overalignment( std::mdspan<float, std::dims<1>, std::layout_right, std::aligned_accessor<float, 4 * alignof(float)>> x);void compute_without_requiring_overalignment( std::mdspan<float, std::dims<1>, std::layout_right> x);void compute(std::mdspan<float, std::dims<1>> x) { constexpr auto byte_alignment = 4 * sizeof(float);auto accessor = std::aligned_accessor<float, byte_alignment>{};auto x_handle = x.data_handle();if (std::is_sufficiently_aligned<byte_alignment>(x_handle)) { compute_using_fourfold_overalignment(std::mdspan{x_handle, x.mapping(), accessor});} else { compute_without_requiring_overalignment(x);} } — _end example_]
23.7.3.5.4.2 Members [mdspan.accessor.aligned.members]
template<class OtherElementType, size_t OtherByteAlignment> constexpr aligned_accessor(aligned_accessor<OtherElementType, OtherByteAlignment>) noexcept;
Constraints:
- is_convertible_v<OtherElementType(*)[], element_type(*)[]>is true.
- OtherByteAlignment >= byte_alignment is true.
template<class OtherElementType> constexpr explicit aligned_accessor(default_accessor<OtherElementType>) noexcept;
Constraints: is_convertible_v<OtherElementType(*)[], element_type(*)[]>is true.
constexpr reference access(data_handle_type p, size_t i) const noexcept;
Preconditions: [0, i + 1) is an accessible range for p and *this.
Effects: Equivalent to: return assume_aligned<byte_alignment>(p)[i];
template<class OtherElementType> constexpr operator default_accessor<OtherElementType>() const noexcept;
Constraints: is_convertible_v<element_type(*)[], OtherElementType(*)[]>is true.
Effects: Equivalent to: return {};
constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept;
Preconditions: [0, i + 1) is an accessible range for p and *this.
Effects: Equivalent to: return assume_aligned<byte_alignment>(p) + i;
23.7.3.6 Class template mdspan [mdspan.mdspan]
23.7.3.6.1 Overview [mdspan.mdspan.overview]
mdspan is a view of a multidimensional array of elements.
namespace std { template<class ElementType, class Extents, class LayoutPolicy = layout_right,class AccessorPolicy = default_accessor<ElementType>> class mdspan { public: using extents_type = Extents;using layout_type = LayoutPolicy;using accessor_type = AccessorPolicy;using mapping_type = typename layout_type::template mapping<extents_type>;using element_type = ElementType;using value_type = remove_cv_t<element_type>;using index_type = typename extents_type::index_type;using size_type = typename extents_type::size_type;using rank_type = typename extents_type::rank_type;using data_handle_type = typename accessor_type::data_handle_type;using reference = typename accessor_type::reference;static constexpr rank_type rank() noexcept { return extents_type::rank(); } static constexpr rank_type rank_dynamic() noexcept { return extents_type::rank_dynamic(); } static constexpr size_t static_extent(rank_type r) noexcept { return extents_type::static_extent(r); } constexpr index_type extent(rank_type r) const noexcept { return extents().extent(r); } constexpr mdspan();constexpr mdspan(const mdspan& rhs) = default;constexpr mdspan(mdspan&& rhs) = default;template<class... OtherIndexTypes> constexpr explicit mdspan(data_handle_type ptr, OtherIndexTypes... exts);template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span<OtherIndexType, N> exts);template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array<OtherIndexType, N>& exts);constexpr mdspan(data_handle_type p, const extents_type& ext);constexpr mdspan(data_handle_type p, const mapping_type& m);constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a);template<class OtherElementType, class OtherExtents,class OtherLayoutPolicy, class OtherAccessorPolicy> constexpr explicit(see below) mdspan(const mdspan<OtherElementType, OtherExtents, OtherLayoutPolicy, OtherAccessorPolicy>& other);constexpr mdspan& operator=(const mdspan& rhs) = default;constexpr mdspan& operator=(mdspan&& rhs) = default;template<class... OtherIndexTypes> constexpr reference operator[](OtherIndexTypes... indices) const;template<class OtherIndexType> constexpr reference operator[](span<OtherIndexType, rank()> indices) const;template<class OtherIndexType> constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const;constexpr size_type size() const noexcept;constexpr bool empty() const noexcept;friend constexpr void swap(mdspan& x, mdspan& y) noexcept;constexpr const extents_type& extents() const noexcept { return map_.extents(); } constexpr const data_handle_type& data_handle() const noexcept { return ptr_; } constexpr const mapping_type& mapping() const noexcept { return map_; } constexpr const accessor_type& accessor() const noexcept { return acc_; } static constexpr bool is_always_unique() { return mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() { return mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() { return mapping_type::is_always_strided(); } constexpr bool is_unique() const { return map_.is_unique(); } constexpr bool is_exhaustive() const { return map_.is_exhaustive(); } constexpr bool is_strided() const { return map_.is_strided(); } constexpr index_type stride(rank_type r) const { return map_.stride(r); } private: accessor_type acc_; mapping_type map_; data_handle_type ptr_; };template<class CArray> requires (is_array_v<CArray> && rank_v<CArray> == 1) mdspan(CArray&) -> mdspan<remove_all_extents_t<CArray>, extents<size_t, extent_v<CArray, 0>>>;template<class Pointer> requires (is_pointer_v<remove_reference_t<Pointer>>) mdspan(Pointer&&) -> mdspan<remove_pointer_t<remove_reference_t<Pointer>>, extents<size_t>>;template<class ElementType, class... Integrals> requires ((is_convertible_v<Integrals, size_t> && ...) && sizeof...(Integrals) > 0) explicit mdspan(ElementType*, Integrals...) -> mdspan<ElementType, extents<size_t, maybe-static-ext<Integrals>...>>;template<class ElementType, class OtherIndexType, size_t N> mdspan(ElementType*, span<OtherIndexType, N>) -> mdspan<ElementType, dextents<size_t, N>>;template<class ElementType, class OtherIndexType, size_t N> mdspan(ElementType*, const array<OtherIndexType, N>&) -> mdspan<ElementType, dextents<size_t, N>>;template<class ElementType, class IndexType, size_t... ExtentsPack> mdspan(ElementType*, const extents<IndexType, ExtentsPack...>&) -> mdspan<ElementType, extents<IndexType, ExtentsPack...>>;template<class ElementType, class MappingType> mdspan(ElementType*, const MappingType&) -> mdspan<ElementType, typename MappingType::extents_type,typename MappingType::layout_type>;template<class MappingType, class AccessorType> mdspan(const typename AccessorType::data_handle_type&, const MappingType&,const AccessorType&) -> mdspan<typename AccessorType::element_type, typename MappingType::extents_type,typename MappingType::layout_type, AccessorType>;}
Mandates:
- ElementType is a complete object type that is neither an abstract class type nor an array type,
- Extents is a specialization of extents, and
- is_same_v<ElementType, typename AccessorPolicy::element_type>is true.
LayoutPolicy shall meet the layout mapping policy requirements ([mdspan.layout.policy.reqmts]), andAccessorPolicy shall meet the accessor policy requirements ([mdspan.accessor.reqmts]).
Each specialization MDS of mdspan models copyable and
- is_nothrow_move_constructible_v<MDS> is true,
- is_nothrow_move_assignable_v<MDS> is true, and
- is_nothrow_swappable_v<MDS> is true.
A specialization of mdspan is a trivially copyable type if its accessor_type, mapping_type, and data_handle_typeare trivially copyable types.
23.7.3.6.2 Constructors [mdspan.mdspan.cons]
Constraints:
- rank_dynamic() > 0 is true.
- is_default_constructible_v<data_handle_type> is true.
- is_default_constructible_v<mapping_type> is true.
- is_default_constructible_v<accessor_type> is true.
Preconditions: [0, _map__.required_span_size()) is an accessible range of _ptr__ and _acc__for the values of _map__ and _acc__after the invocation of this constructor.
Effects: Value-initializes ptr_, map_, and acc_.
template<class... OtherIndexTypes> constexpr explicit mdspan(data_handle_type p, OtherIndexTypes... exts);
Let N be sizeof...(OtherIndexTypes).
Constraints:
- (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
- (is_nothrow_constructible<index_type, OtherIndexTypes> && ...) is true,
- N == rank() || N == rank_dynamic() is true,
- is_constructible_v<mapping_type, extents_type> is true, and
- is_default_constructible_v<accessor_type> is true.
Preconditions: [0, _map__.required_span_size()) is an accessible range of p and _acc__for the values of _map__ and _acc__after the invocation of this constructor.
Effects:
- Direct-non-list-initializes ptr_ with std::move(p),
- direct-non-list-initializes map_ withextents_type(static_cast<index_type>(std::move(exts))...), and
- value-initializes acc_.
template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span<OtherIndexType, N> exts);template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array<OtherIndexType, N>& exts);
Constraints:
- is_convertible_v<const OtherIndexType&, index_type> is true,
- is_nothrow_constructible_v<index_type, const OtherIndexType&> is true,
- N == rank() || N == rank_dynamic() is true,
- is_constructible_v<mapping_type, extents_type> is true, and
- is_default_constructible_v<accessor_type> is true.
Preconditions: [0, _map__.required_span_size()) is an accessible range of p and _acc__for the values of _map__ and _acc__after the invocation of this constructor.
Effects:
- Direct-non-list-initializes ptr_ with std::move(p),
- direct-non-list-initializes map_ with extents_type(exts), and
- value-initializes acc_.
constexpr mdspan(data_handle_type p, const extents_type& ext);
Constraints:
- is_constructible_v<mapping_type, const extents_type&> is true, and
- is_default_constructible_v<accessor_type> is true.
Preconditions: [0, _map__.required_span_size()) is an accessible range of p and _acc__for the values of _map__ and _acc__after the invocation of this constructor.
Effects:
- Direct-non-list-initializes ptr_ with std::move(p),
- direct-non-list-initializes map_ with ext, and
- value-initializes acc_.
constexpr mdspan(data_handle_type p, const mapping_type& m);
Constraints: is_default_constructible_v<accessor_type> is true.
Preconditions: [0, m.required_span_size()) is an accessible range of p and _acc__for the value of _acc__ after the invocation of this constructor.
Effects:
- Direct-non-list-initializes ptr_ with std::move(p),
- direct-non-list-initializes map_ with m, and
- value-initializes acc_.
constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a);
Preconditions: [0, m.required_span_size()) is an accessible range of p and a.
Effects:
- Direct-non-list-initializes ptr_ with std::move(p),
- direct-non-list-initializes map_ with m, and
- direct-non-list-initializes acc_ with a.
template<class OtherElementType, class OtherExtents,class OtherLayoutPolicy, class OtherAccessor> constexpr explicit(_see below_) mdspan(const mdspan<OtherElementType, OtherExtents, OtherLayoutPolicy, OtherAccessor>& other);
Constraints:
- is_constructible_v<mapping_type, const OtherLayoutPolicy::template mapping<Oth-
erExtents>&>is true, and - is_constructible_v<accessor_type, const OtherAccessor&> is true.
Mandates:
- is_constructible_v<data_handle_type, const OtherAccessor::data_handle_type&> is
true, and - is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: [0, _map__.required_span_size()) is an accessible range of _ptr__ and _acc__for values of _ptr__, _map__, and _acc__after the invocation of this constructor.
Hardened preconditions: For each rank index r of extents_type,static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r)is true.
Effects:
- Direct-non-list-initializes ptr_ with other.ptr_,
- direct-non-list-initializes map_ with other.map_, and
- direct-non-list-initializes acc_ with other.acc_.
Remarks: The expression inside explicit is equivalent to:!is_convertible_v<const OtherLayoutPolicy::template mapping<OtherExtents>&, mapping_type> || !is_convertible_v<const OtherAccessor&, accessor_type>
23.7.3.6.3 Members [mdspan.mdspan.members]
template<class... OtherIndexTypes> constexpr reference operator[](OtherIndexTypes... indices) const;
Constraints:
- (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
- (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
- sizeof...(OtherIndexTypes) == rank() is true.
Let I be extents_type::index-cast(std::move(indices)).
Hardened preconditions: I is a multidimensional index in extents().
[Note 1:
This implies that_map__(I) < map_.required_span_size()is true.
— _end note_]
Effects: Equivalent to:return acc_.access(ptr_, map_(static_cast<index_type>(std::move(indices))...));
template<class OtherIndexType> constexpr reference operator[](span<OtherIndexType, rank()> indices) const;template<class OtherIndexType> constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const;
Constraints:
- is_convertible_v<const OtherIndexType&, index_type> is true, and
- is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.
Effects: Let P be a parameter pack such thatis_same_v<make_index_sequence<rank()>, index_sequence<P...>> is true.
Equivalent to:return operator[](extents_type::_index-cast_(as_const(indices[P]))...);
constexpr size_type size() const noexcept;
Preconditions: The size of the multidimensional index space extents()is representable as a value of type size_type ([basic.fundamental]).
Returns: extents().fwd-prod-of-extents(rank()).
constexpr bool empty() const noexcept;
Returns: trueif the size of the multidimensional index space extents() is 0, otherwise false.
friend constexpr void swap(mdspan& x, mdspan& y) noexcept;
Effects: Equivalent to:swap(x.ptr_, y.ptr_); swap(x.map_, y.map_); swap(x.acc_, y.acc_);
23.7.3.7 submdspan [mdspan.sub]
23.7.3.7.1 Overview [mdspan.sub.overview]
The submdspan facilities create a new mdspanviewing a subset of elements of an existing input mdspan.
The subset viewed by the created mdspan is determined by the SliceSpecifier arguments.
For each function defined in [mdspan.sub] that takes a parameter pack named slices as an argument:
- let index_type be
- M::index_type if the function is a member of a class M,
- otherwise,remove_reference_t<decltype(src)>::index_type if the function has a parameter named src,
- otherwise, the same type as the function's template argument IndexType;
- let rank be the number of elements in slices;
- let be the element of slices;
- let be the type of ; and
- let map-rank be an array<size_t, rank> such that for each k in the range [0, rank),_map-rank_[k] equals:
- dynamic_extent if models convertible_to<index_type>,
- otherwise, the number of types with that do not model convertible_to<index_type>.
23.7.3.7.2 strided_slice [mdspan.sub.strided.slice]
strided_slice represents a set ofextent regularly spaced integer indices.
The indices start at offset, and increase by increments of stride.
namespace std { template<class OffsetType, class ExtentType, class StrideType> struct strided_slice { using offset_type = OffsetType;using extent_type = ExtentType;using stride_type = StrideType;[[no_unique_address]] offset_type offset{};[[no_unique_address]] extent_type extent{};[[no_unique_address]] stride_type stride{};};}
strided_slice has the data members and special members specified above.
It has no base classes or members other than those specified.
Mandates: OffsetType, ExtentType, and StrideTypeare signed or unsigned integer types, or model integral-constant-like.
[Note 1:
strided_slice{.offset = 1, .extent = 10, .stride = 3}indicates the indices 1, 4, 7, and 10.
Indices are selected from the half-open interval [1, 1 + 10).
— _end note_]
23.7.3.7.3 submdspan_mapping_result [mdspan.sub.map.result]
Specializations of submdspan_mapping_resultare returned by overloads of submdspan_mapping.
namespace std { template<class LayoutMapping> struct submdspan_mapping_result { [[no_unique_address]] LayoutMapping mapping = LayoutMapping(); size_t offset{};};}
submdspan_mapping_result has the data members and special members specified above.
It has no base classes or members other than those specified.
LayoutMapping shall meet the layout mapping requirements ([mdspan.layout.policy.reqmts]).
23.7.3.7.4 Exposition-only helpers [mdspan.sub.helpers]
template<class T> constexpr T _de-ice_(T val) { return val; } template<[_integral-constant-like_](#concept:integral-constant-like "23.7.2.1 Header <span> synopsis [span.syn]") T> constexpr auto _de-ice_(T) { return T::value; } template<class IndexType, size_t k, class... SliceSpecifiers> constexpr IndexType _first_(SliceSpecifiers... slices);
Mandates: IndexType is a signed or unsigned integer type.
Let denote the following value:
- if models convertible_to<IndexType>;
- otherwise,get<0>()if models index-pair-like<IndexType>;
- otherwise,de-ice(.offset)if is a specialization of strided_slice;
- otherwise,0.
Preconditions: is representable as a value of type IndexType.
Returns: extents<IndexType>::index-cast().
template<size_t k, class Extents, class... SliceSpecifiers> constexpr auto _last_(const Extents& src, SliceSpecifiers... slices);
Mandates: Extents is a specialization of extents.
Let index_type be typename Extents::index_type.
Let denote the following value:
- de-ice() + 1if models convertible_to<index_type>; otherwise
- get<1>()if models index-pair-like<index_type>; otherwise
- de-ice(.offset) + de-ice(.extent)if is a specialization of strided_slice; otherwise
- src.extent(k).
Preconditions: is representable as a value of type index_type.
Returns: Extents::index-cast().
template<class IndexType, size_t N, class... SliceSpecifiers> constexpr array<IndexType, sizeof...(SliceSpecifiers)> _src-indices_(const array<IndexType, N>& indices, SliceSpecifiers... slices);
Mandates: IndexType is a signed or unsigned integer type.
Returns: An array<IndexType, sizeof...(SliceSpecifiers)> src_idx such that for each k in the range [0, sizeof...(SliceSpecifiers)),src_idx[k] equals
- first_<IndexType, k>(slices...) for each kwhere _map-rank_[k] equalsdynamic_extent,
- otherwise,first_<IndexType, k>(slices...) + indices[_map-rank_[k]].
23.7.3.7.5 submdspan_extents function [mdspan.sub.extents]
template<class IndexType, class... Extents, class... SliceSpecifiers> constexpr auto submdspan_extents(const extents<IndexType, Extents...>& src, SliceSpecifiers... slices);
Constraints: sizeof...(slices) equals Extents::rank().
Mandates: For each rank index k of src.extents(), exactly one of the following is true:
- models convertible_to<IndexType>,
- models index-pair-like<IndexType>,
- is_convertible_v<, full_extent_t> is true, or
- is a specialization of strided_slice.
Preconditions: For each rank index k of src.extents(), all of the following are true:
- if is a specialization of strided_slice
- , or
- 0 ≤ first_<IndexType, k>(slices...) ≤ last_<k>(src, slices...) ≤ src.extent(k)
Let SubExtents be a specialization of extents such that:
- SubExtents::rank() equals the number of k such that does not model convertible_to<IndexType>; and
- for each rank index k of Extents such that_map-rank_[k] != dynamic_extent is true,SubExtents::static_extent(_map-rank_[k]) equals:
- Extents::static_extent(k) if is_convertible_v<, full_extent_t> is true; otherwise
- de-ice(tuple_element_t<1, >()) - de-ice(tuple_element_t<0, >()) if models index-pair-like<IndexType>, and both tuple_element_t<0, > andtuple_element_t<1, > model integral-constant-like; otherwise
- 0, if is a specialization of strided_slice, whoseextent_type models integral-constant-like, for which extent_type() equals zero; otherwise
- 1 + (de-ice(::extent_type()) - 1) / de-ice(::stride_type()), if is a specialization of strided_slice whoseextent_type and stride_type model integral-constant-like;
- otherwise,dynamic_extent.
Returns: A value ext of type SubExtents such that for each kfor which _map-rank_[k] != dynamic_extent is true,ext.extent(_map-rank_[k]) equals:
- .extent == 0 ? 0 : 1 + (de-ice(.extent) - 1) / de-ice(.stride)if is a specialization of strided_slice,
- otherwise,last_<k>(src, slices...) - first_<IndexType, k>(slices...).
23.7.3.7.6 Specializations of submdspan_mapping [mdspan.sub.map]
23.7.3.7.6.1 Common [mdspan.sub.map.common]
The following elements apply to all functions in [mdspan.sub.map].
Constraints: sizeof...(slices) equals extents_type::rank().
Mandates: For each rank index k of extents(), exactly one of the following is true:
- models convertible_to<index_type>,
- models index-pair-like<index_type>,
- is_convertible_v<, full_extent_t> is true, or
- is a specialization of strided_slice.
Preconditions: For each rank index k of extents(), all of the following are true:
- if is a specialization of strided_slice,.extent is equal to zero or.stride is greater than zero; and
- 0 ≤ first_<index_type, k>(slices...)
0 ≤ last_<k>(extents(), slices...)
0 ≤ extents().extent(k)
Let sub_ext be the result of submdspan_extents(extents(), slices...) and let SubExtents be decltype(sub_ext).
Let sub_strides be an array<SubExtents::index_type, SubExtents::rank()>such that for each rank index k of extents()for which _map-rank_[k] is not dynamic_extent,sub_strides[_map-rank_[k]] equals:
- stride(k) * de-ice(.stride)if is a specialization of strided_slice and.stride < .extent is true;
- otherwise, stride(k).
Let P be a parameter pack such that is_same_v<make_index_sequence<rank()>, index_sequence<P...>>is true.
If first_<index_type, k>(slices...)equals extents().extent(k)for any rank index k of extents(), then let offset be a value of type size_t equal to(*this).required_span_size().
Otherwise, let offset be a value of type size_t equal to(*this)(first_<index_type, P>(slices...)...).
Given a layout mapping type M, a type S is aunit-stride slice for M if
- S is a specialization of strided_slicewhere S::stride_type models integral-constant-likeand S::stride_type::value equals 1,
- S models index-pair-like<M::index_type>, or
- is_convertible_v<S, full_extent_t> is true.
23.7.3.7.6.2 layout_left specialization of submdspan_mapping [mdspan.sub.map.left]
template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_left::mapping<Extents>::_submdspan-mapping-impl_( SliceSpecifiers... slices) const -> _see below_;
Returns:
- submdspan_mapping_result{*this, 0}, if Extents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_left::mapping(sub_ext), offset}, if SubExtents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_left::mapping(sub_ext), offset}, if
- for each k in the range [0, SubExtents::rank() - 1)),is_convertible_v<, full_extent_t> is true; and
- for k equal to SubExtents::rank() - 1, is a unit-stride slice for mapping;
[Note 1:
If the above conditions are true, all with k larger than SubExtents::rank() - 1are convertible to index_type.
— _end note_]
- otherwise,submdspan_mapping_result{layout_left_padded<S_static>::mapping(sub_ext, stride(u + 1)), offset} if for a value u for which is the smallest value p larger than zero for which is a unit-stride slice for mapping, the following conditions are met:
- is a unit-stride slice for mapping; and
- for each k in the range [u + 1, u + SubExtents::rank() - 1),is_convertible_v<, full_extent_t> is true; and
- for k equal to u + SubExtents::rank() - 1, is a unit-stride slice for mapping;
and where S_static is: - dynamic_extent, if static_extent(k) is dynamic_extentfor any k in the range [0, u + 1),
- otherwise, the product of all valuesstatic_extent(k) for k in the range [0, u + 1);
- otherwise,submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset}
23.7.3.7.6.3 layout_right specialization of submdspan_mapping [mdspan.sub.map.right]
template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_right::mapping<Extents>::_submdspan-mapping-impl_( SliceSpecifiers... slices) const -> _see below_;
Returns:
- submdspan_mapping_result{*this, 0}, if Extents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_right::mapping(sub_ext), offset}, if SubExtents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_left::mapping(sub_ext), offset}, if
- otherwise,submdspan_mapping_result{layout_right_padded<S_static>::mapping(sub_ext, stride(rank_ - u - 2)), offset} if for a value u for which is the largest value p smaller than rank_ - 1for which is a unit-stride slice for mapping, the following conditions are met:
- for k equal to rank_ - 1, is a unit-stride slice for mapping; and
- for each k in the range [rank_ - SubExtents::rank() - u + 1, rank_ - u - 1),is_convertible_v<, full_extent_t> is true; and
- for k equal to rank_ - SubExtents::rank() - u,
is a unit-stride slice for mapping;
and where S_static is: - dynamic_extent, if static_extent(k) is dynamic_extentfor any k in the range [rank_ - u - 1, rank_),
- otherwise, the product of all valuesstatic_extent(k)for k in the range [rank_ - u - 1, rank_);
- otherwise,submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset}
23.7.3.7.6.4 layout_stride specialization of submdspan_mapping [mdspan.sub.map.stride]
template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_stride::mapping<Extents>::_submdspan-mapping-impl_( SliceSpecifiers... slices) const -> _see below_;
Returns:
- submdspan_mapping_result{*this, 0}, if Extents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset}
23.7.3.7.6.5 layout_left_padded specialization of submdspan_mapping [mdspan.sub.map.leftpad]
template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_left_padded::mapping<Extents>::_submdspan-mapping-impl_( SliceSpecifiers... slices) const -> _see below_;
Returns:
- submdspan_mapping_result{*this, 0}, if Extents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_left::mapping(sub_ext), offset}, if rank_ == 1 is true orSubExtents::rank() == 0 is true;
- otherwise,submdspan_mapping_result{layout_left::mapping(sub_ext), offset}, if
- SubExtents::rank() == 1 is true and
- is a unit-stride slice for mapping;
- otherwise,submdspan_mapping_result{layout_left_padded<S_static>::mapping(sub_ext, stride(u + 1)), offset} if for a value ufor which u + 1 is the smallest value p larger than zero for which is a unit-stride slice for mapping, the following conditions are met:
- is a unit-stride slice for mapping; and
- for each k in the range [u + 1, u + SubExtents::rank() - 1),is_convertible_v<, full_extent_t> is true; and
- for k equal to u + SubExtents::rank() - 1, is a unit-stride slice for mapping;
where S_static is: - dynamic_extent, if static-padding-stride is dynamic_extent orstatic_extent(k) is dynamic_extentfor any k in the range [1, u + 1),
- otherwise, the product of static-padding-stride and all values static_extent(k) for k in the range [1, u + 1);
- otherwise,submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset}
23.7.3.7.6.6 layout_right_padded specialization of submdspan_mapping [mdspan.sub.map.rightpad]
template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_right_padded::mapping<Extents>::submdspan-mapping-impl( SliceSpecifiers... slices) const -> _see below_;
Returns:
- submdspan_mapping_result{*this, 0}, if rank_ == 0 is true;
- otherwise,submdspan_mapping_result{layout_right::mapping(sub_ext), offset},
if rank_ == 1 is true orSubExtents::rank() == 0 is true; - otherwise,submdspan_mapping_result{layout_right::mapping(sub_ext), offset}, if
- SubExtents::rank() == 1 is true and
- for k equal to rank_ - 1, is a unit-stride slice for mapping;
- otherwise,submdspan_mapping_result{layout_right_padded<S_static>::mapping(sub_ext, stride(rank_ - u - 2)), offset} if for a value ufor which rank_ - u - 2is the largest value p smaller than rank_ - 1for which is a unit-stride slice for mapping, the following conditions are met:
- for k equal to rank_ - 1, is a unit-stride slice for mapping; and
- for each k in the range [rank_ - SubExtents::rank() - u + 1, rank_ - u - 1)),is_convertible_v<, full_extent_t> is true; and
- for k equal to rank_ - SubExtents::rank() - u,
is a unit-stride slice for mapping;
and where S_static is: - dynamic_extentif static-padding-stride is dynamic_extent or for any k in the range [rank_ - u - 1, rank_ - 1)static_extent(k) is dynamic_extent,
- otherwise, the product of static-padding-stride and all values static_extent(k)with k in the range [rank_ - u - 1, rank_ - 1);
- otherwise,submdspan_mapping_result{layout_stride::mapping(sub_ext, sub_strides), offset}
23.7.3.7.7 submdspan function template [mdspan.sub.sub]
template<class ElementType, class Extents, class LayoutPolicy,class AccessorPolicy, class... SliceSpecifiers> constexpr auto submdspan( const mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>& src, SliceSpecifiers... slices) -> _see below_;
Let index_type be typename Extents::index_type.
Let sub_map_offset be the result ofsubmdspan_mapping(src.mapping(), slices...).
[Note 1:
This invocation of submdspan_mappingselects a function call via overload resolution on a candidate set that includes the lookup set found by argument-dependent lookup ([basic.lookup.argdep]).
— _end note_]
Constraints:
- sizeof...(slices) equals Extents::rank(), and
- the expression submdspan_mapping(src.mapping(), slices...)is well-formed when treated as an unevaluated operand.
Mandates:
- decltype(submdspan_mapping(src.mapping(), slices...))is a specialization of submdspan_mapping_result.
- is_same_v<remove_cvref_t<decltype(sub_map_offset.mapping.extents())>, decltype(submdspan_extents(src.mapping(), slices...))>is true.
- For each rank index k of src.extents(), exactly one of the following is true:
- models convertible_to<index_type>,
- models index-pair-like<index_type>,
- is_convertible_v<, full_extent_t> is true, or
- is a specialization of strided_slice.
Preconditions:
- For each rank index k of src.extents(), all of the following are true:
- if is a specialization of strided_slice
* , or - 0 ≤ first_<index_type, k>(slices...) ≤ last_<k>(src.extents(), slices...) ≤ src.extent(k)
- if is a specialization of strided_slice
- sub_map_offset.mapping.extents() == submdspan_extents(src.mapping(), slices...)is true; and
- for each integer pack I which is a multidimensional index in sub_map_offset.mapping.extents(),sub_map_offset.mapping(I...) + sub_map_offset.offset == src.mapping()(src-indices(array{I...}, slices...)) is true.
[Note 2:
These conditions ensure that the mapping returned by submdspan_mappingmatches the algorithmically expected index-mapping given the slice specifiers.
— _end note_]
Effects: Equivalent to:auto sub_map_result = submdspan_mapping(src.mapping(), slices...);return mdspan(src.accessor().offset(src.data(), sub_map_result.offset), sub_map_result.mapping, AccessorPolicy::offset_policy(src.accessor()));
[Example 1:
Given a rank-3 mdspan grid3d representing a three-dimensional grid of regularly spaced points in a rectangular prism, the function zero_surface sets all elements on the surface of the 3-dimensional shape to zero.
It does so by reusing a function zero_2dthat takes a rank-2 mdspan.
template<class T, class E, class L, class A> void zero_2d(mdspan<T, E, L, A> a) { static_assert(a.rank() == 2);for (int i = 0; i < a.extent(0); i++) for (int j = 0; j < a.extent(1); j++) a[i, j] = 0;} template<class T, class E, class L, class A> void zero_surface(mdspan<T, E, L, A> grid3d) { static_assert(grid3d.rank() == 3); zero_2d(submdspan(grid3d, 0, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, 0, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, 0)); zero_2d(submdspan(grid3d, grid3d.extent(0) - 1, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, grid3d.extent(1) - 1, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, grid3d.extent(2) - 1));} — _end example_]