(original) (raw)
## ----installation, echo=TRUE, eval=FALSE-------------------------------------- # ## try http:// if https:// URLs are not supported # if (!requireNamespace("BiocManager", quietly=TRUE)) # install.packages("BiocManager") # BiocManager::install("BPRMeth") # # ## Or download from Github repository # # install.packages("devtools") # devtools::install_github("andreaskapou/BPRMeth", build_vignettes = TRUE) ## ----fig.retina = NULL, fig.align='center', fig.cap="Illustration of the process for infering methylation profiles using the `BPRMeth` package.", echo=FALSE---- knitr::include_graphics("../inst/figures/model.png") ## ----fig.retina = NULL, fig.align='center', fig.cap="Workflow diagram and functionalities of the BPRMeth package.", echo=FALSE---- knitr::include_graphics("../inst/figures/workflow.png") ## ----load_met, echo=TRUE, message=FALSE, warning=FALSE------------------------ library(BPRMeth) # Load package met_region <- encode_met ## ----echo=TRUE, message=FALSE, warning=FALSE---------------------------------- head(met_region$met[[20]]) ## ----echo=TRUE, message=FALSE, warning=FALSE---------------------------------- head(met_region$anno) ## ----echo=TRUE, message=FALSE, warning=FALSE---------------------------------- NROW(met_region$anno) ## ----read_met_dt_pipeline, echo=TRUE, message=FALSE, eval=FALSE--------------- # # Read bulk methylation data # met_dt <- read_met(file = "met_file", type = "bulk_seq") # # Read annotation file, which will create annotation regions as well # anno_dt <- read_anno(file = "anno_file") # # Create methylation regions that have CpG coverage # met_region <- create_region_object(met_dt = met_dt, anno_dt = anno_dt) ## ----echo=TRUE, message=FALSE, warning=FALSE---------------------------------- expr <- encode_expr ## ----echo=TRUE, message=FALSE, warning=FALSE---------------------------------- head(expr) ## ----echo=TRUE, message=FALSE, eval=FALSE, warning=FALSE---------------------- # # Read expression data and log2 transform them # expr <- read_expr(file = "expr_file", log2_transf = TRUE) ## ----create_basis, echo=TRUE, message=FALSE, warning=FALSE-------------------- # Create RBF basis object with 5 RBFs basis_profile <- create_rbf_object(M = 5) # Create RBF basis object with 0 RBFs, i.e. constant function basis_mean <- create_rbf_object(M = 0) ## ----show_basis, echo=TRUE, message=FALSE, warning=FALSE---------------------- # Show the slots of the 'rbf' object basis_profile ## ----infer_profiles, echo=TRUE, message=FALSE, warning=FALSE------------------ fit_profiles <- infer_profiles_vb(X = met_region$met, model = "binomial", basis = basis_profile, is_parallel = FALSE) fit_mean <- infer_profiles_vb(X = met_region$met, model = "binomial", basis = basis_mean, is_parallel = FALSE) ## ----show_infer_object, echo=TRUE, message=FALSE, warning=FALSE--------------- # Show structure of fit_profiles object str(fit_profiles, max.level = 1) ## ----plotprofile, fig.wide=TRUE, echo=TRUE, fig.cap="Inferring methylation profiles. Methylation pattern for specific genomic region over +/-7kb promoter region.", message=FALSE, eval=TRUE, warning=FALSE---- # Choose promoter region 21 -> i.e. LEPREL2 gene gene_id <- met_region$anno$id[21] p <- plot_infer_profiles(region = 21, obj_prof = fit_profiles, obj_mean = fit_mean, obs = met_region$met, title = paste0("Gene ID ", gene_id)) print(p) ## ----predictexpr, echo=TRUE, message=FALSE, warning=FALSE, warning=FALSE------ # Set seed for reproducible results set.seed(22) # Perform predictions using methylation profiles pred_profile <- predict_expr(prof_obj = fit_profiles, expr = expr, anno = met_region$anno, model_name = "svm", fit_feature = "RMSE", cov_feature = TRUE, is_summary = FALSE) # Perform predictions using mean methylation rate pred_mean <- predict_expr(prof_obj = fit_mean, expr = expr, anno = met_region$anno, model_name = "svm", is_summary = FALSE) ## ----l9, echo=TRUE, message=FALSE, warning=FALSE------------------------------ print(paste("Profile r: ", round(pred_profile$test_errors$pcc, 2))) print(paste("Mean r:", round(pred_mean$test_errors$pcc, 2))) ## ----plotpred, echo=TRUE, fig.cap="Relationship between DNA methylation patterns and gene expression. Scatter plots of predicted versus measured (log2-transformed) gene expression values using profiles (left) and rates (right); each shaded blue dot represents a different gene, The red line indicates the linear fit between the predicted and measured expression values.", fig.wide=TRUE, message=FALSE, eval=TRUE, warning=FALSE---- g1 <- plot_predicted_expr(pred_obj = pred_profile, title = "Methylation profile") g2 <- plot_predicted_expr(pred_obj = pred_mean, title = "Methylation rate") g <- cowplot::plot_grid(g1, g2, ncol = 2, nrow = 1) print(g) ## ----clustering, echo=TRUE, message=FALSE, eval=TRUE, warning=FALSE----------- # Set seed for reproducible results set.seed(12) # Create basis object basis_obj <- create_rbf_object(M = 3) # Set number of clusters K K <- 4 # Perform clustering cl_obj <- cluster_profiles_vb(X = met_region$met, K = K, model = "binomial", alpha_0 = .5, beta_0 = .1, basis = basis_obj, vb_max_iter = 20) ## ----clusterplot, fig.wide=TRUE, echo=TRUE, fig.cap="Clustering methylation profiles across promoter-proximal regions.", message=FALSE, eval=TRUE, warning=FALSE---- cluster_plot <- plot_cluster_profiles(cluster_obj = cl_obj) print(cluster_plot) ## ----infer_profiles_beta, fig.wide = TRUE, echo=TRUE, message=FALSE, warning=FALSE---- basis_obj <- create_rbf_object(M = 5) # Infer beta profiles beta_prof <- infer_profiles_mle(X = beta_data, model = "beta", basis = basis_obj, is_parallel = FALSE) p <- plot_infer_profiles(region = 15, obj_prof = beta_prof, obs = beta_data, title = "Beta profile") print(p) ## ----infer_profiles_bernoulli, fig.wide=TRUE, echo=TRUE, message=FALSE, warning=FALSE---- basis_prof <- create_rbf_object(M = 5) basis_mean <- create_rbf_object(M = 0) bern_prof <- infer_profiles_vb(X = bernoulli_data, model = "bernoulli", basis = basis_prof, is_parallel = FALSE) bern_mean <- infer_profiles_vb(X = bernoulli_data, model = "bernoulli", basis = basis_mean, is_parallel = FALSE) p <- plot_infer_profiles(region = 60, obj_prof = bern_prof, obj_mean = bern_mean, obs = bernoulli_data, title = "Bernoulli profile") print(p) ## ----cluster_bernoulli, fig.wide=TRUE, echo=TRUE, fig.cap="Clustering Bernoulli methylation profiles.", message=FALSE, eval=TRUE, warning=FALSE---- # Perform clustering cl_obj <- cluster_profiles_vb(X = bernoulli_data, K = 3, model = "bernoulli", basis = basis_obj, vb_max_iter = 40) cluster_plot <- plot_cluster_profiles(cluster_obj = cl_obj) print(cluster_plot) ## ----session_info, echo=TRUE, message=FALSE----------------------------------- sessionInfo()