BatchQC Examples (original) (raw)
Contents
Example 1: Protein Data
This data set is from protein expression data captured for 39 proteins. It has two batches and two conditions corresponding to case and control.
library(BatchQC)
data(protein_data)
data(protein_sample_info)
se_object <- BatchQC::summarized_experiment(protein_data, protein_sample_info)
Example 2: Signature Data
This data set is from signature data captured when activating different growth pathway genes in human mammary epithelial cells (GEO accession: GSE73628). This data consists of three batches and ten different conditions corresponding to control and nine different pathways
data(signature_data)
data(batch_indicator)
se_object <- BatchQC::summarized_experiment(signature_data, batch_indicator)
Example 3: Bladderbatch Data
This data set is from bladder cancer data. This dataset has 57 bladder samples with 5 batches and 3 covariate levels (cancer, biopsy, control). Batch 1 contains only cancer, 2 has cancer and controls, 3 has only controls, 4 contains only biopsy, and 5 contains cancer and biopsy. This data set is from the bladderbatch package which must be installed to use this data example set (Leek JT (2023). bladderbatch: Bladder gene expression data illustrating batch effects. R package version 1.38.0).
if (!requireNamespace("bladderbatch", quietly = TRUE))
BiocManager::install("bladderbatch")
se_object <- BatchQC::bladder_data_upload()
Session info
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BatchQC_2.2.0 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 ggdendro_0.2.0
## [3] jsonlite_1.8.9 magrittr_2.0.3
## [5] magick_2.8.5 NCmisc_1.2.0
## [7] farver_2.1.2 rmarkdown_2.28
## [9] zlibbioc_1.52.0 vctrs_0.6.5
## [11] memoise_2.0.1 EBSeq_2.4.0
## [13] tinytex_0.53 htmltools_0.5.8.1
## [15] S4Arrays_1.6.0 BiocNeighbors_2.0.0
## [17] SparseArray_1.6.0 sass_0.4.9
## [19] KernSmooth_2.23-24 bslib_0.8.0
## [21] htmlwidgets_1.6.4 plyr_1.8.9
## [23] testthat_3.2.1.1 plotly_4.10.4
## [25] cachem_1.1.0 igraph_2.1.1
## [27] mime_0.12 lifecycle_1.0.4
## [29] pkgconfig_2.0.3 rsvd_1.0.5
## [31] Matrix_1.7-1 R6_2.5.1
## [33] fastmap_1.2.0 GenomeInfoDbData_1.2.13
## [35] MatrixGenerics_1.18.0 shiny_1.9.1
## [37] digest_0.6.37 colorspace_2.1-1
## [39] ggnewscale_0.5.0 AnnotationDbi_1.68.0
## [41] S4Vectors_0.44.0 DESeq2_1.46.0
## [43] dqrng_0.4.1 irlba_2.3.5.1
## [45] crosstalk_1.2.1 GenomicRanges_1.58.0
## [47] RSQLite_2.3.7 beachmat_2.22.0
## [49] labeling_0.4.3 fansi_1.0.6
## [51] httr_1.4.7 abind_1.4-8
## [53] mgcv_1.9-1 compiler_4.4.1
## [55] withr_3.0.2 bit64_4.5.2
## [57] BiocParallel_1.40.0 DBI_1.2.3
## [59] highr_0.11 gplots_3.2.0
## [61] MASS_7.3-61 DelayedArray_0.32.0
## [63] bluster_1.16.0 gtools_3.9.5
## [65] caTools_1.18.3 tools_4.4.1
## [67] httpuv_1.6.15 glue_1.8.0
## [69] nlme_3.1-166 promises_1.3.0
## [71] grid_4.4.1 cluster_2.1.6
## [73] reshape2_1.4.4 generics_0.1.3
## [75] sva_3.54.0 gtable_0.3.6
## [77] tidyr_1.3.1 data.table_1.16.2
## [79] BiocSingular_1.22.0 ScaledMatrix_1.14.0
## [81] metapod_1.14.0 utf8_1.2.4
## [83] XVector_0.46.0 BiocGenerics_0.52.0
## [85] pillar_1.9.0 stringr_1.5.1
## [87] limma_3.62.0 genefilter_1.88.0
## [89] later_1.3.2 splines_4.4.1
## [91] dplyr_1.1.4 lattice_0.22-6
## [93] survival_3.7-0 reader_1.0.6
## [95] bit_4.5.0 annotate_1.84.0
## [97] tidyselect_1.2.1 SingleCellExperiment_1.28.0
## [99] locfit_1.5-9.10 Biostrings_2.74.0
## [101] scuttle_1.16.0 knitr_1.48
## [103] bookdown_0.41 blockmodeling_1.1.5
## [105] IRanges_2.40.0 edgeR_4.4.0
## [107] SummarizedExperiment_1.36.0 stats4_4.4.1
## [109] xfun_0.48 Biobase_2.66.0
## [111] statmod_1.5.0 brio_1.1.5
## [113] matrixStats_1.4.1 pheatmap_1.0.12
## [115] stringi_1.8.4 UCSC.utils_1.2.0
## [117] lazyeval_0.2.2 yaml_2.3.10
## [119] evaluate_1.0.1 codetools_0.2-20
## [121] RcppEigen_0.3.4.0.2 tibble_3.2.1
## [123] BiocManager_1.30.25 cli_3.6.3
## [125] shinythemes_1.2.0 xtable_1.8-4
## [127] munsell_0.5.1 jquerylib_0.1.4
## [129] Rcpp_1.0.13 GenomeInfoDb_1.42.0
## [131] tidyverse_2.0.0 png_0.1-8
## [133] XML_3.99-0.17 parallel_4.4.1
## [135] ggplot2_3.5.1 blob_1.2.4
## [137] scran_1.34.0 bitops_1.0-9
## [139] viridisLite_0.4.2 scales_1.3.0
## [141] purrr_1.0.2 crayon_1.5.3
## [143] rlang_1.1.4 KEGGREST_1.46.0
## [145] shinyjs_2.1.0