ORFik Overview (original) (raw)
Contents
- 1 Introduction
- 2 Finding Open Reading Frames
- 3 New GRanges and GRangesList utilities for ORFs
- 4 When to use which ORF-finding function
- 5 CAGE data for 5’ UTR re-annotation
- 6 RiboSeq footprints automatic shift detection and shifting
- 7 Gene identity functions for ORFs or genes
- 8 Calculating Kozak sequence score for ORFs
- 9 Using ORFik in your package or scripts
- 10 Coverage plots made easy with ORFik
- 11 Conclusion
Introduction
Welcome to the ORFik
package.ORFik
is an R package for analysis of transcript and translation features through manipulation of sequence data and NGS data like Ribo-Seq, RNA-Seq, TCP-Seq and CAGE. It is generalized in the sense that any transcript region can be analysed, as the name hints to, it was made with investigation of ribosomal patterns over Open Reading Frames (ORFs) as it’s primary use case.
This vignette will walk you through our detailed package usage with examples.
ORFik
currently supports:
- Finding Open Reading Frames (very fast) in the genome of interest or on the set of transcripts/sequences.
- Hundreds of functions helping your analysis of either: sequence data, RNA-seq data, CAGE data, Ribo-seq data, TCP-seq data or RCP-seq data.
- Automatic estimations of RiboSeq footprint shift.
- Utilities for metaplots of RiboSeq coverage over gene START and STOP codons allowing to spot the shift.
- Shifting functions for the RiboSeq data.
- Annotation / re-annotation of 5’ UTR Transcription Start Sites using CAGE data.
- Various measurements of gene identity, more than 30 functions. e.g. FLOSS, coverage, ORFscore, entropy that are recreated based on scientific publications.
- Utility functions to extend GenomicRanges for faster grouping, splitting, filtering etc. Included c++ function for speed.
- Extensive implemented syntax for coverage and metacoverage of NGS data, including smart grouping functions for easier prototyping.
- Automatic download of genome annotation from any species supported by ensembl.
- Automatic download and metadata extraction of NGS files from SRA, ERA, DRA and GEO.
- Full NGS alignment pipeline: Trimming data using fastp and alignment using STAR (with optional contaminant removals)
- Simplifying working with massive amounts of datasets using the ORFik experiment class.
The basics for the first 9 points on this list is described here, for more advanced use (point 10-13) check out the other vignettes. This overview vignette shows simplified analysis on single libraries (to make the examples simple). So for more complex analysis on multiple libraries, continue with the other vignettes when you have finish this one.
Finding Open Reading Frames
In molecular genetics, an Open Reading Frame (ORF) is the part of a reading frame that has the ability to be translated. Although not every ORF has the potential to be translated or to be functional, to find novel genes we must first be able to identify potential ORFs.
To find all Open Reading Frames (ORFs) and possibly map them to genomic coordinates,ORFik
gives you three main functions:
findORFs
- find ORFs in sequences of interest (local sequence search),findMapORFs
- find ORFs and map them to their respective genomic coordinates (for spliced transcriptomes)findORFsFasta
- find all ORFs in Fasta file or entireBSGenome
(supports circular genomes!)
Example of finding ORFs in on 5’ UTR of hg19
Load libraries we need for examples
library(ORFik) # This package
library(GenomicFeatures) # For basic transcript operations
library(data.table) # For fast table operations
library(BSgenome.Hsapiens.UCSC.hg19) # Human genome
After loading libraries, load human genome sample annotation from GenomicFeatures
.
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
We load gtf file as txdb (transcript database). We will then extract the 5’ leaders to find all upstream open reading frames.
txdb <- loadTxdb(txdbFile)
fiveUTRs <- loadRegion(txdb, "leaders")
fiveUTRs[1]
## GRangesList object of length 1:
## $uc001bum.2
## GRanges object with 1 range and 3 metadata columns:
## seqnames ranges strand | exon_id exon_name exon_rank
## <Rle> <IRanges> <Rle> | <integer> <character> <integer>
## [1] chr1 32671236-32671282 + | 1 <NA> 1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
As we can see we have extracted 5’ UTRs for hg19 annotations. Now we can loadBSgenome
version of human genome (hg19).
Either import fasta or BSgenome file to get sequences.
# Extract sequences of fiveUTRs.
tx_seqs <- extractTranscriptSeqs(BSgenome.Hsapiens.UCSC.hg19::Hsapiens,
fiveUTRs)
tx_seqs[1]
## DNAStringSet object of length 1:
## width seq names
## [1] 47 AATGACGTACTTCGCAGGCGCGCGGGCGGGCCTGGCAGTTGGCGCCC uc001bum.2
Find all ORFs on those transcripts and get their genomic coordinates.
fiveUTR_ORFs <- findMapORFs(fiveUTRs, tx_seqs, groupByTx = FALSE)
fiveUTR_ORFs[1:2]
## GRangesList object of length 2:
## $uc010ogz.1_1
## GRanges object with 2 ranges and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32671314-32671324 + | uc010ogz.1_1
## uc010ogz.1 chr1 32671755-32671902 + | uc010ogz.1_1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## $uc010ogz.1_2
## GRanges object with 1 range and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32672038-32672076 + | uc010ogz.1_2
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
In the example above, you can see that fiveUTR_ORFs are grouped by ORF. That means each group in the GRangesList is 1 ORF, that can have multiple exons. To get the transcript the ORF came from, do this:
txNames(fiveUTR_ORFs[1:2]) # <- Which transcript
## [1] "uc010ogz.1" "uc010ogz.1"
You see that both ORFs are from transcript “uc010ogz.1”
Meta-column names contains name of the transcript and identifier of the ORF separated by "_“. When a ORF is separated into two exons you see it twice, as the first ORF with name”uc010ogz.1_1". The first ORF will always be the one most upstream for + strand, and the least upstream for - strand.
names(fiveUTR_ORFs[1:2]) # <- Which ORF
## [1] "uc010ogz.1_1" "uc010ogz.1_2"
Saving coordinates of ORFs to disc
We recommend two options for storing ORF ranges:
- If you want to reuse only in R: Save as R object
saveRDS(fiveUTR_ORFs[1:2], "save/path/uorfs.rds")
- If you want to use in IGV, UCSC genome browser etc: Save as bed12 format, that is a bed format with 1 row per ORF, that contains splicing information and even possible color coding for visualizing groups of ORFs:
export.bed12(fiveUTR_ORFs[1:2], "save/path/uorfs.bed12")
Getting sequences from ORFs
Now lets see how easy it is to get fasta sequences from the ranges.
Getting DNA fasta sequences of ORFs
Lets start with the case of getting the DNA sequences.
orf_seqs <- extractTranscriptSeqs(BSgenome.Hsapiens.UCSC.hg19::Hsapiens,
fiveUTR_ORFs[1:3])
orf_seqs
## DNAStringSet object of length 3:
## width seq names
## [1] 159 CTGCATTGCAGGCCTGCGTCCGG...GCCGCGATTCCTCCCAGAGGTAG uc010ogz.1_1
## [2] 39 CTGCTAGATCATGGTGCCCAGATACTTGGAAGGGTTTAG uc010ogz.1_2
## [3] 141 ATGACGTACTTCGCAGGCGCGCG...CAGTTCCAGAGCCTGCGAGCTGA uc010ogz.1_3
You can see ORF 1 named (uc010ogz.1_1) has a CTG start codon, a TAG stop codon and 159/3 = 53 codons.
To save as .fasta do
writeXStringSet(orf_seqs, filepath = "uorfs.fasta")
Amino acid sequences of ORFs
Now lets do the case of getting the amino acid sequences. We start with the DNA sequences already done from previous step.
To translate to amino acids, following the standard genetic code, do:
orf_aa_seq <- Biostrings::translate(orf_seqs)
orf_aa_seq
## AAStringSet object of length 3:
## width seq names
## [1] 53 MHCRPASGASWSDASSRACELSM...RATWARFSGPRAAFPGRDSSQR* uc010ogz.1_1
## [2] 13 MLDHGAQILGRV* uc010ogz.1_2
## [3] 47 MTYFAGARAGLAVGAHGARAAGSEGVCIAGLRPGLLGPTPVPEPAS* uc010ogz.1_3
save amino acid sequences as .fasta do
writeXStringSet(orf_aa_seq, filepath = "uorfs_AA.fasta")
We will now look on ORFik functions to get startcodons and stopcodon etc.
New GRanges and GRangesList utilities for ORFs
We will now go through utilities to group, subset and filter on interesting regions of ORFs in transcripts.
Grouping ORFs
There are 2 main ways of grouping ORFs. - Group by ORF (Each group are all exons per ORF) - Group by transcript (Each group are all ORFs from transcript)
To do this more easily, you can use the function groupGRangesBy
.
- Grouped by transcript: We use the names() to group,
unlisted_ranges <- unlistGrl(fiveUTR_ORFs)
test_ranges <- groupGRangesBy(unlisted_ranges) # <- defualt is tx grouping by names()
test_ranges[1]
## GRangesList object of length 1:
## $uc010ogz.1
## GRanges object with 10 ranges and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32671314-32671324 + | uc010ogz.1_1
## uc010ogz.1 chr1 32671755-32671902 + | uc010ogz.1_1
## uc010ogz.1 chr1 32672038-32672076 + | uc010ogz.1_2
## uc010ogz.1 chr1 32671237-32671324 + | uc010ogz.1_3
## uc010ogz.1 chr1 32671755-32671807 + | uc010ogz.1_3
## uc010ogz.1 chr1 32671934-32672044 + | uc010ogz.1_4
## uc010ogz.1 chr1 32672048-32672152 + | uc010ogz.1_5
## uc010ogz.1 chr1 32671274-32671324 + | uc010ogz.1_6
## uc010ogz.1 chr1 32671755-32671913 + | uc010ogz.1_6
## uc010ogz.1 chr1 32672034-32672192 + | uc010ogz.1_7
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
All orfs within a transcript grouped together as one group, the names column seperates the orfs.
- Grouped by ORF: we use the orfs meta column called ($names) to group, it is made by ORFik.
unlisted_ranges <- unlistGrl(fiveUTR_ORFs)
test_ranges <- groupGRangesBy(unlisted_ranges, unlisted_ranges$names)
test_ranges[1:2]
## GRangesList object of length 2:
## $uc010ogz.1_1
## GRanges object with 2 ranges and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32671314-32671324 + | uc010ogz.1_1
## uc010ogz.1 chr1 32671755-32671902 + | uc010ogz.1_1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## $uc010ogz.1_2
## GRanges object with 1 range and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32672038-32672076 + | uc010ogz.1_2
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
Here you see each group is one ORF only (this is the primary grouping)
Filtering example
Lets say you found some ORFs, and you want to filter out some of them. ORFik provides several functions for filtering. A problem with the original GenomicRanges container is that filtering on GRanges objects are much easier than on a GRangesList object, ORFik tries to fix this.
In this example we will filter out all ORFs as following:
- First group GRangesList by ORFs
- width < 60
- number of exons < 2
- strand is negative
Lets use the fiveUTR_ORFs from previous example:
- Group by ORFs (primary grouping)
unlisted_ranges <- unlistGrl(fiveUTR_ORFs)
ORFs <- groupGRangesBy(unlisted_ranges, unlisted_ranges$names)
length(ORFs) # length means how many ORFs left in set
## [1] 839
- Remove widths < 60
ORFs <- ORFs[widthPerGroup(ORFs) >= 60]
length(ORFs)
## [1] 426
- Keep only ORFs with at least 2 exons
ORFs <- ORFs[numExonsPerGroup(ORFs) > 1]
length(ORFs)
## [1] 120
- Keep only + strand ORFs
ORFs <- ORFs[strandPerGroup(ORFs) == "+"]
# all remaining ORFs where on positive strand, so no change
length(ORFs)
## [1] 120
ORF interest regions
Specific part of the ORF are usually of interest, as start and stop codons. Here we run an example to show what ORFik can do for you.
- Find the start and stop sites as GRanges
startSites(fiveUTR_ORFs, asGR = TRUE, keep.names = TRUE, is.sorted = TRUE)
## GRanges object with 839 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## uc010ogz.1_1 chr1 32671314 +
## uc010ogz.1_2 chr1 32672038 +
## uc010ogz.1_3 chr1 32671237 +
## uc010ogz.1_4 chr1 32671934 +
## uc010ogz.1_5 chr1 32672048 +
## ... ... ... ...
## uc011jox.1_3 chr6_ssto_hap7 3272624 -
## uc011jox.1_4 chr6_ssto_hap7 3272420 -
## uc011jox.1_5 chr6_ssto_hap7 3272731 -
## uc011jox.1_6 chr6_ssto_hap7 3272521 -
## uc011jox.1_7 chr6_ssto_hap7 3272198 -
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
stopSites(fiveUTR_ORFs, asGR = TRUE, keep.names = TRUE, is.sorted = TRUE)
## GRanges object with 839 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## uc010ogz.1_1 chr1 32671902 +
## uc010ogz.1_2 chr1 32672076 +
## uc010ogz.1_3 chr1 32671807 +
## uc010ogz.1_4 chr1 32672044 +
## uc010ogz.1_5 chr1 32672152 +
## ... ... ... ...
## uc011jox.1_3 chr6_ssto_hap7 3272448 -
## uc011jox.1_4 chr6_ssto_hap7 3272200 -
## uc011jox.1_5 chr6_ssto_hap7 3272522 -
## uc011jox.1_6 chr6_ssto_hap7 3272456 -
## uc011jox.1_7 chr6_ssto_hap7 3272169 -
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
- Lets find the start and stop codons. This takes care of potential 1 base exons etc.
starts <- startCodons(fiveUTR_ORFs, is.sorted = TRUE)
stops <- stopCodons(fiveUTR_ORFs, is.sorted = TRUE)
starts[1:2]
## GRangesList object of length 2:
## $uc010ogz.1_1
## GRanges object with 1 range and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32671314-32671316 + | uc010ogz.1_1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## $uc010ogz.1_2
## GRanges object with 1 range and 1 metadata column:
## seqnames ranges strand | names
## <Rle> <IRanges> <Rle> | <character>
## uc010ogz.1 chr1 32672038-32672040 + | uc010ogz.1_2
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
- Lets get the bases of the start and stop codons from the fasta file It’s very important to check that ORFs are sorted here,
txSeqsFromFa(starts, BSgenome.Hsapiens.UCSC.hg19::Hsapiens, is.sorted = TRUE)
## DNAStringSet object of length 839:
## width seq names
## [1] 3 CTG uc010ogz.1_1
## [2] 3 CTG uc010ogz.1_2
## [3] 3 ATG uc010ogz.1_3
## [4] 3 TTG uc010ogz.1_4
## [5] 3 ATG uc010ogz.1_5
## ... ... ...
## [835] 3 TTG uc011jox.1_3
## [836] 3 TTG uc011jox.1_4
## [837] 3 CTG uc011jox.1_5
## [838] 3 ATG uc011jox.1_6
## [839] 3 ATG uc011jox.1_7
"Stop codons"
## [1] "Stop codons"
txSeqsFromFa(stops, BSgenome.Hsapiens.UCSC.hg19::Hsapiens, is.sorted = TRUE)
## DNAStringSet object of length 839:
## width seq names
## [1] 3 TAG uc010ogz.1_1
## [2] 3 TAG uc010ogz.1_2
## [3] 3 TGA uc010ogz.1_3
## [4] 3 TAG uc010ogz.1_4
## [5] 3 TAG uc010ogz.1_5
## ... ... ...
## [835] 3 TAG uc011jox.1_3
## [836] 3 TAG uc011jox.1_4
## [837] 3 TGA uc011jox.1_5
## [838] 3 TGA uc011jox.1_6
## [839] 3 TAG uc011jox.1_7
Many more operations are also supported for manipulation of ORFs
When to use which ORF-finding function
ORFik supports multiple ORF finding functions. Here we describe their specific use cases:
Which function you will use depend on which organism the data is from, and specific parameters, like circular or non circular genomes, will you use a transcriptome etc.
There are 4 standard ways of finding ORFs:
- You have some fasta file of the genome only. (For prokaryotes/circular genomes)
- You have some fasta file of the genome and a spliced transcriptome annotation. (For eukaryotes with splicing)
- You have a fasta file of transcripts (eukaryotes or prokaryotes)
- You have a vector of transcripts preloaded in R.
Let’s start with the simplest case; a vector of preloaded transcripts.
Lets say you have some transcripts and want to find all ORFs on them. findORFs() will give you only 5’ to 3’ direction, so if you want both directions, you can do (for strands in both direction):
library(Biostrings)
# strand with ORFs in both directions
seqs <- DNAStringSet("ATGAAATGAAGTAAATCAAAACAT")
######################>######################< (< > is direction of ORF)
# positive strands
pos <- findORFs(seqs, startCodon = "ATG", minimumLength = 0)
# negative strands
neg <- findORFs(reverseComplement(seqs),
startCodon = "ATG", minimumLength = 0)
Merge into a GRanges object, since we want strand information
pos <- GRanges(pos, strand = "+")
neg <- GRanges(neg, strand = "-")
# as GRanges
res <- c(pos, neg)
# or merge together and make GRangesList
res <- split(res, seq.int(1, length(pos) + length(neg)))
res[1:2]
## GRangesList object of length 2:
## $`1`
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] 1 1-9 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
##
## $`2`
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] 1 6-14 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Remember that these results are in transcript coordinates, sometimes you need to convert them to Genomic coordinates.
Finding ORFs in spliced transcripts
If you have a genome and a spliced transcriptome annotation, you must use findMapORFs(). It takes care of the potential problem from the last example, that we really want our result in genomic coordinates in the end.
Prokaryote/Circular Genomes and fasta transcriptomes.
Use findORFsFasta(is.circular = TRUE). Note that findORFsFasta automaticly finds (-) strand too, because that is normally used for genomes.
Filter on strand
If you have fasta transcriptomes, you dont want the (-) strand. Since all transcripts are in the direction in the fasta file. If you get both (+/-) strand and only want (+) ORFs, do:
res[strandBool(res)] # Keep only + stranded ORFs
## GRangesList object of length 2:
## $`1`
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] 1 1-9 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
##
## $`2`
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] 1 6-14 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
See individual functions for more examples.
CAGE data for 5’ UTR re-annotation
In the previous example we used the reference annotation of the 5’ UTRs from Hg19.
Here we will use CAGE data to set new Transcription Start Sites (TSS) and re-annotate 5’ UTRs. This is useful to improve tissue specific transcripts. Since most eukaryotes usually have variance in TSS definitions.
# path to example CageSeq data from hg19 heart sample
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",
package = "ORFik")
# get new Transcription Start Sites using CageSeq dataset
newFiveUTRs <- reassignTSSbyCage(fiveUTRs, cageData)
newFiveUTRs
## GRangesList object of length 150:
## $uc001bum.2
## GRanges object with 1 range and 3 metadata columns:
## seqnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## uc001bum.2 chr1 32671236-32671282 + | 1 <NA>
## exon_rank
## <integer>
## uc001bum.2 1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## $uc009vua.2
## GRanges object with 1 range and 3 metadata columns:
## seqnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## uc009vua.2 chr1 32671236-32671282 + | 2 <NA>
## exon_rank
## <integer>
## uc009vua.2 1
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## $uc010ogz.1
## GRanges object with 2 ranges and 3 metadata columns:
## seqnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## uc010ogz.1 chr1 32671236-32671324 + | 1 <NA>
## uc010ogz.1 chr1 32671755-32672223 + | 4 <NA>
## exon_rank
## <integer>
## uc010ogz.1 1
## uc010ogz.1 2
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
##
## ...
## <147 more elements>
You will now normally see a portion of the transcription start sites have changed. Depending on the species, regular annotations might be incomplete or not specific enough for your purposes.
- NOTE: IF you want to edit the whole txdb / gtf file, use reassignTxDbByCage. And save this to get the new gtf with reannotated leaders by CAGE.
Gene identity functions for ORFs or genes
ORFik
contains functions of gene identity that can be used to predict which ORFs are potentially coding and functional.
There are 2 main categories:
- Sequence features (kozak, gc-content, etc.)
- Read features (reads as: Ribo-seq, RNA-seq, TCP-seq, shape-seq etc)
Some important read features are:
- FLOSS
floss
- coverage
coverage
- ORFscore
orfScore
- entropy
entropy
- translational effiency
translationalEff
- inside outside score
insideOutsideScore
- distance between orfs and cds’
distToCds
- other
All of the features are implemented based on scientific article published in peer reviewed journal. ORFik
supports seamless calculation of all available features. See example below.
Find ORFs:
fiveUTRs <- fiveUTRs[1:10]
faFile <- BSgenome.Hsapiens.UCSC.hg19::Hsapiens
tx_seqs <- extractTranscriptSeqs(faFile, fiveUTRs)
fiveUTR_ORFs <- findMapORFs(fiveUTRs, tx_seqs, groupByTx = FALSE)
Make some toy ribo seq and rna seq data:
starts <- unlist(ORFik:::firstExonPerGroup(fiveUTR_ORFs), use.names = FALSE)
RFP <- promoters(starts, upstream = 0, downstream = 1)
RFP$size <- rep(29, length(RFP)) # store read widths
# set RNA-seq seq to duplicate transcripts
RNA <- unlist(exonsBy(txdb, by = "tx", use.names = TRUE), use.names = TRUE)
Find features of sequence and library data
# transcript database
txdb <- loadTxdb(txdbFile)
dt <- computeFeatures(fiveUTR_ORFs[1:4], RFP, RNA, txdb, faFile,
sequenceFeatures = TRUE)
dt
## countRFP te fpkmRFP fpkmRNA floss entropyRFP disengagementScores
## <int> <num> <num> <num> <num> <num> <num>
## 1: 1 Inf 898472.6 0 0 0.0000000 0.4
## 2: 2 Inf 7326007.3 0 0 0.2702382 3.0
## 3: 3 Inf 3039513.7 0 0 0.2853429 0.8
## 4: 3 Inf 3861003.9 0 0 0.3042474 2.0
## RRS RSS ORFScores ioScore startCodonCoverage
## <num> <num> <num> <num> <int>
## 1: 7.610063 26.500000 1.584963 0.2500000 1
## 2: 46.538462 4.333333 1.000000 0.4285714 1
## 3: 17.163121 11.750000 0.000000 0.6666667 1
## 4: 21.801802 9.250000 0.000000 0.6666667 1
## startRegionCoverage startRegionRelative kozak gc StartCodons
## <num> <num> <num> <num> <char>
## 1: 0 2 0.3390461 0.6477987 CTG
## 2: 0 2 0.1949422 0.4871795 CTG
## 3: 0 2 0.0000000 0.6666667 ATG
## 4: 0 2 0.7079892 0.5405405 TTG
## StopCodons fractionLengths distORFCDS inFrameCDS isOverlappingCds rankInTx
## <char> <num> <num> <num> <lgcl> <int>
## 1: TAG 0.07022968 322 0 FALSE 1
## 2: TAG 0.01722615 148 0 FALSE 2
## 3: TGA 0.06227915 417 2 FALSE 3
## 4: TAG 0.04902827 180 2 FALSE 4
You will now get a data.table with one column per score, the columns are named after the different scores, you can now go further with prediction, or making plots.
Calculating Kozak sequence score for ORFs
Instead of getting all features, we can also extract single features.
To understand how strong the binding affinitity of an ORF promoter region might be, we can use kozak sequence score. The kozak functions supports several species. In the first example we use human kozak sequence, then we make a self defined kozak sequence.
In this example we will find kozak score of cds’
cds <- cdsBy(txdb, by = "tx", use.names = TRUE)[1:10]
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)[names(cds)]
faFile <- BSgenome.Hsapiens.UCSC.hg19::Hsapiens
kozakSequenceScore(cds, tx, faFile, species = "human")
## [1] 0.6967712 0.6967712 0.6875293 0.6532747 0.6792100 0.6792100 0.6710977
## [8] 0.4239905 0.7592302 0.6417780
A few species are pre supported, if not, make your own input pfm.
Here is an example where the human pfm is sent in again, even though it is already supported:
pfm <- t(matrix(as.integer(c(29,26,28,26,22,35,62,39,28,24,27,17,
21,26,24,16,28,32,5,23,35,12,42,21,
25,24,22,33,22,19,28,17,27,47,16,34,
25,24,26,25,28,14,5,21,10,17,15,28)),
ncol = 4))
kozakSequenceScore(cds, tx, faFile, species = pfm)
## [1] 0.5531961 0.5531961 0.6652532 0.6925763 0.6370870 0.6370870 0.4854677
## [8] 0.4706279 0.6381237 0.6529909
As an example of the many plots you can make with ORFik, let’s make a scoring of Ribo-seq by kozak sequence.
seqs <- startRegionString(cds, tx, faFile, upstream = 5, downstream = 5)
rate <- fpkm(cds, RFP)
ORFik:::kozakHeatmap(seqs, rate)
## [1] "Distribution of observations per position per letter"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 3.000 3.929 5.000 10.000
## [1] "Picking: >2 observations"
It will be a black boundary box around the strongest nucleotide per position (what base at what position gives highest ribo-seq fpkm for the cds). See at the start codon (position +1 to +3) you have A, T, G. As known from the literature many C’s before start codon and a G after the start codon. In a real example most of the nucleotides will be used for all positions.
Using ORFik in your package or scripts
The focus of ORFik for development is to be a Swiss army knife for transcriptomics. If you need functions for splicing, getting windows of exons per transcript, periodic windows of exons, speicific parts of exons etc, ORFik can help you with this.
Let’s do an example where ORFik shines. Objective: We have three transcripts, we also have a library of Ribo-seq. This library was treated with cyclohexamide, so we know Ribo-seq reads can stack up close to the stop codon of the CDS. Lets say we only want to keep transcripts, where the cds stop region (defined as last 9 bases of cds), has maximum 33% of the reads. To only keep transcripts with a good spread of reads over the CDS. How would you make this filter ?
# First make some toy example
cds <- GRanges("chr1", IRanges(c(1, 10, 20, 30, 40, 50, 60, 70, 80),
c(5, 15, 25, 35, 45, 55, 65, 75, 85)),
"+")
names(cds) <- c(rep("tx1", 3), rep("tx2", 3), rep("tx3", 3))
cds <- groupGRangesBy(cds)
ribo <- GRanges("chr1", c(1, rep.int(23, 4), 30, 34, 34, 43, 60, 64, 71, 74),
"+")
# We could do a simplification and use the ORFik entropy function
entropy(cds, ribo) # <- spread of reads
## [1] 0.3270264 0.5802792 0.7737056
We see that ORF 1, has a low (bad) entropy, but we do not know where the reads are stacked up. So lets make a new filter by using more ORFiks utility functions:
tile <- tile1(cds, FALSE, FALSE) # tile them to 1 based positions
tails <- tails(tile, 9) # get 9 last bases per cds
stopOverlap <- countOverlaps(tails, ribo)
allOverlap <- countOverlaps(cds, ribo)
fractions <- (stopOverlap + 1) / (allOverlap + 1) # pseudocount 1
cdsToRemove <- fractions > 1 / 2 # filter with pseudocounts (1+1)/(3+1)
cdsToRemove
## tx1 tx2 tx3
## TRUE FALSE FALSE
We now easily made a stop codon filter for our coding sequences.
Coverage plots made easy with ORFik
In investigation of ORFs or other interest regions, ORFik can help you make some coverage plots from reads of Ribo-seq, RNA-seq, CAGE-seq, TCP-seq etc.
Lets make 3 plots of Ribo-seq focused on CDS regions.
Load data as shown before and pshift the Ribo-seq:
# Get the annotation
txdb <- loadTxdb(gtf_file)
# Ribo-seq
bam_file <- system.file("extdata/Danio_rerio_sample", "ribo-seq.bam", package = "ORFik")
reads <- readGAlignments(bam_file)
shiftedReads <- shiftFootprints(reads, detectRibosomeShifts(reads, txdb))
Make meta windows of leaders, cds’ and trailers
# Lets take all valid transcripts, with size restrictions:
# leader > 100 bases, cds > 100 bases, trailer > 100 bases
txNames <- filterTranscripts(txdb, 100, 100, 100) # valid transcripts
loadRegions(txdb, parts = c("leaders", "cds", "trailers", "tx"),
names.keep = txNames)
# Create meta coverage per part of transcript
leaderCov <- metaWindow(shiftedReads, leaders, scoring = NULL,
feature = "leaders")
cdsCov <- metaWindow(shiftedReads, cds, scoring = NULL,
feature = "cds")
trailerCov <- metaWindow(shiftedReads, trailers, scoring = NULL,
feature = "trailers")
Bind together and plot:
dt <- rbindlist(list(leaderCov, cdsCov, trailerCov))
dt[, `:=` (fraction = "Ribo-seq")] # Set info column
# zscore gives shape, a good starting plot
windowCoveragePlot(dt, scoring = "zscore", title = "Ribo-seq metaplot")
Z-score is good at showing overall shape. You see from the windows each region; leader, cds and trailer is scaled to 100. NOTE: we can use the function windowPerTranscript to do all of this in one call.
Lets use a median scoring to find median counts per meta window per positions.
windowCoveragePlot(dt, scoring = "median", title = "Ribo-seq metaplot")
We see a big spike close to start of CDS, called the TIS. The median counts by transcript is close to 50 here. Lets look at the TIS region using the pshifting plot, seperated into the 3 frames.
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
# size 100 window: 50 upstream, 49 downstream of TIS
windowsStart <- startRegion(cds, tx, TRUE, upstream = 50, 49)
hitMapStart <- metaWindow(shiftedReads, windowsStart, withFrames = TRUE)
pSitePlot(hitMapStart, length = "meta coverage")
}
Since these reads are p-shifted, the maximum number of reads are on the 0 position. We also see a clear pattern in the Ribo-seq.
To see how the different read lengths distribute over the region, we make a heatmap. Where the colors represent the zscore of counts per position.
hitMap <- windowPerReadLength(cds, tx, shiftedReads)
coverageHeatMap(hitMap, addFracPlot = TRUE)
In the heatmap you can see that read length 30 has the strongest peak on the TIS, while read length 28 has some reads in the leaders (the minus positions).
Multiple data sets in one plot
Often you have multiple data sets you want to compare (like ribo-seq).
ORFik has an extensive syntax for automatic grouping of data sets in plots.
The protocol is: 1. Load all data sets 2. Create a merged coverage data.table 3. Pass it into the plot you want.
Here is an easy example:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
# Load more files like above (Here I make sampled data from earlier Ribo-seq)
dt2 <- copy(dt)
dt2[, `:=` (fraction = "Ribo-seq2")]
dt2$score <- dt2$score + sample(seq(-40, 40), nrow(dt2), replace = TRUE)
dtl <- rbindlist(list(dt, dt2))
windowCoveragePlot(dtl, scoring = "median", title = "Ribo-seq metaplots")
}
You see that the fraction column is what seperates the rows. You can have unlimited datasets joined in this way. For more useful examples of multilibrary plotting continue with the vignette called ORFikExperiment (Data management).
Conclusion
Our hope is that by using ORFik, we can simplify your analysis when you focus on ORFs / transcript features and especially in combination with sequence libraries like RNA-seq and Ribo-seq.
If needed, you can move to the more advanced features of ORFik in the next vignettes, Happy coding!