cBioPortalData: User Guide (original) (raw)
Contents
- Installation
- Introduction
- Citations
- Overview
* Data Structures
* Identifying available studies
* Choosing download method - Two main functions
* cBioDataPack: Obtain Study Data as Zipped Tarballs
* cBioPortalData: Obtain data from the cBioPortal API - Considerations
* metadata
* Build prompts
* Manual downloads - Clearing the cache
* cBioDataPack
* cBioPortalData - Example Analysis: Kaplan-Meier Plot
* Data update requests
- Overview
- sessionInfo
- References
Installation
library(cBioPortalData)
library(AnVIL)
Introduction
The cBioPortal for Cancer Genomics website is a great resource for interactive exploration of study datasets. However, it does not easily allow the analyst to obtain and further analyze the data.
We’ve developed the cBioPortalData
package to fill this need to programmatically access the data resources available on the cBioPortal.
The cBioPortalData
package provides an R interface for accessing the cBioPortal study data within the Bioconductor ecosystem.
It downloads study data from the cBioPortal API (the full API specification can be found here https://cbioportal.org/api) and uses Bioconductor infrastructure to cache and represent the data.
We demonstrate common use cases of cBioPortalData
and curatedTCGAData
during Bioconductor conferenceworkshops.
We use the MultiAssayExperiment (Ramos et al. (2017)) package to integrate, represent, and coordinate multiple experiments for the studies available in the cBioPortal. This package in conjunction with curatedTCGAData
give access to a large trove of publicly available bioinformatic data. Please see our JCO Clinical Cancer Informatics publication here (Ramos et al. (2020)).
Citations
Our free and open source project depends on citations for funding. When usingcBioPortalData
, please cite the following publications:
citation("MultiAssayExperiment")
citation("cBioPortalData")
Overview
Data Structures
Data are provided as a single MultiAssayExperiment
per study. TheMultiAssayExperiment
representation usually contains SummarizedExperiment
objects for expression data and RaggedExperiment
objects for mutation and CNV-type data. RaggedExperiment
is a data class for representing ‘ragged’ genomic location data, meaning that the measurements per sample vary.
For more information, please see the RaggedExperiment
andSummarizedExperiment
vignettes.
Identifying available studies
As we work through the data, there are some datasest that cannot be represented as MultiAssayExperiment
objects. This can be due to a number of reasons such as the way the data is handled, presence of mis-matched identifiers, invalid data types, etc. To see what datasets are currently not building, we can look refer to getStudies()
with the buildReport = TRUE
argument.
cbio <- cBioPortal()
studies <- getStudies(cbio, buildReport = TRUE)
head(studies)
## # A tibble: 6 × 15
## name description publicStudy pmid citation groups status importDate
## <chr> <chr> <lgl> <chr> <chr> <chr> <int> <chr>
## 1 Acute Lymphob… Comprehens… TRUE 2573… Anderss… "PUBL… 0 2024-12-0…
## 2 Hypodiploid A… Whole geno… TRUE 2333… Holmfel… "" 0 2024-12-0…
## 3 Adenoid Cysti… Targeted S… TRUE 2441… Ross et… "ACYC… 0 2024-12-0…
## 4 Adenoid Cysti… Whole-geno… TRUE 2686… Rettig … "ACYC… 0 2024-12-0…
## 5 Adenoid Cysti… WGS of 21 … TRUE 2663… Mitani … "ACYC… 0 2024-12-0…
## 6 Adenoid Cysti… Whole-geno… TRUE 2682… Drier e… "ACYC" 0 2024-12-0…
## # ℹ 7 more variables: allSampleCount <int>, readPermission <lgl>,
## # studyId <chr>, cancerTypeId <chr>, referenceGenome <chr>, api_build <lgl>,
## # pack_build <lgl>
The last two columns will show the availability of each studyId
for either download method (pack_build
for cBioDataPack
and api_build
forcBioPortalData
).
Choosing download method
There are two main user-facing functions for downloading data from the cBioPortal API.
cBioDataPack
makes use of the tarball distribution of study data. This is useful when the user wants to download and analyze the entirety of the data as available from the cBioPortal.org website.cBioPortalData
allows a more flexibile approach to obtaining study data based on the available parameters such as molecular profile identifiers. This option is useful for users who have a set of gene symbols or identifiers and would like to get a smaller subset of the data that correspond to a particular molecular profile.
Two main functions
cBioDataPack: Obtain Study Data as Zipped Tarballs
This function will access the packaged data from and return an integrative MultiAssayExperiment representation.
## Use ask=FALSE for non-interactive use
laml <- cBioDataPack("laml_tcga", ask = FALSE)
laml
## A MultiAssayExperiment object of 12 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 12:
## [1] cna: SummarizedExperiment with 24776 rows and 191 columns
## [2] cna_hg19.seg: RaggedExperiment with 13571 rows and 191 columns
## [3] linear_cna: SummarizedExperiment with 24776 rows and 191 columns
## [4] methylation_hm27: SummarizedExperiment with 10968 rows and 194 columns
## [5] methylation_hm450: SummarizedExperiment with 10968 rows and 194 columns
## [6] mrna_seq_rpkm: SummarizedExperiment with 19720 rows and 179 columns
## [7] mrna_seq_rpkm_zscores_ref_all_samples: SummarizedExperiment with 19720 rows and 179 columns
## [8] mrna_seq_rpkm_zscores_ref_diploid_samples: SummarizedExperiment with 19719 rows and 179 columns
## [9] mrna_seq_v2_rsem: SummarizedExperiment with 20531 rows and 173 columns
## [10] mrna_seq_v2_rsem_zscores_ref_all_samples: SummarizedExperiment with 20531 rows and 173 columns
## [11] mrna_seq_v2_rsem_zscores_ref_diploid_samples: SummarizedExperiment with 20440 rows and 173 columns
## [12] mutations: RaggedExperiment with 2584 rows and 197 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
cBioPortalData: Obtain data from the cBioPortal API
This function provides a more flexible and granular way to request aMultiAssayExperiment
object from a study ID, molecular profile, gene panel, sample list.
acc <- cBioPortalData(api = cbio, by = "hugoGeneSymbol", studyId = "acc_tcga",
genePanelId = "IMPACT341",
molecularProfileIds = c("acc_tcga_rppa", "acc_tcga_linear_CNA")
)
## harmonizing input:
## removing 1 colData rownames not in sampleMap 'primary'
acc
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] acc_tcga_linear_CNA: SummarizedExperiment with 339 rows and 90 columns
## [2] acc_tcga_rppa: SummarizedExperiment with 57 rows and 46 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Note. To avoid overloading the API service, the API was designed to only query a part of the study data. Therefore, the user is required to enter either a set of genes of interest or a gene panel identifier.
Considerations
Note that cBioPortalData
and cBioDataPack
obtain data diligently curated by the cBio Portal data team. The original data and curation lies in thehttps://github.com/cBioPortal/cBioPortal GitHub repository. However, despite the curation efforts there may be some inconsistencies in identifiers in the data. This causes our software to not work as intended though we have made efforts to represent all the data from both API and tarball formats.
Build prompts
You will also get a message for studyId
s whose data has not been fully integrated into a MultiAssayExperiment
.
## Our testing shows that '%s' is not currently building.
## Use 'downloadStudy()' to manually obtain the data.
## Proceed anyway? [y/n]: y
Manual downloads
For this reason, we have also provided the downloadStudy
, untarStudy
, andloadStudy
functions to allow researchers to simply download the data and potentially, manually curate it. Generally, we advise researchers to report inconsistencies in the data in the cBioPortal data repository.
Clearing the cache
cBioDataPack
In cases where a download is interrupted, the user may experience a corrupt cache. The user can clear the cache for a particular study by using theremoveCache
function. Note that this function only works for data downloaded through the cBioDataPack
function.
removeCache("laml_tcga")
cBioPortalData
For users who wish to clear the entire cBioPortalData
cache, it is recommended that they use:
unlink("~/.cache/cBioPortalData/")
Example Analysis: Kaplan-Meier Plot
We can use information in the colData
to draw a K-M plot with a few variables from the colData
slot of the MultiAssayExperiment
. First, we load the necessary packages:
library(survival)
library(survminer)
We can check the data to lookout for any issues.
table(colData(laml)$OS_STATUS)
##
## 0:LIVING 1:DECEASED
## 67 133
class(colData(laml)$OS_MONTHS)
## [1] "character"
Now, we clean the data a bit to ensure that our variables are of the right type for the subsequent survival model fit.
collaml <- colData(laml)
collaml[collaml$OS_MONTHS == "[Not Available]", "OS_MONTHS"] <- NA
collaml$OS_MONTHS <- as.numeric(collaml$OS_MONTHS)
colData(laml) <- collaml
We specify a simple survival model using SEX
as a covariate and we draw the K-M plot.
fit <- survfit(
Surv(OS_MONTHS, as.numeric(substr(OS_STATUS, 1, 1))) ~ SEX,
data = colData(laml)
)
ggsurvplot(fit, data = colData(laml), risk.table = TRUE)
Data update requests
If you are interested in a particular study dataset that is not currently building, please open an issue at our GitHub repository and we will do our best to resolve the issues with the code base. Data issues can be opened at the cBioPortal data repository.
We appreciate your feedback!
sessionInfo
Click to see session info
sessionInfo()
## R version 4.5.0 RC (2025-04-04 r88126)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] survminer_0.5.0 ggpubr_0.6.0
## [3] ggplot2_3.5.2 survival_3.8-3
## [5] cBioPortalData_2.20.0 MultiAssayExperiment_1.34.0
## [7] SummarizedExperiment_1.38.0 Biobase_2.68.0
## [9] GenomicRanges_1.60.0 GenomeInfoDb_1.44.0
## [11] IRanges_2.42.0 S4Vectors_0.46.0
## [13] BiocGenerics_0.54.0 generics_0.1.3
## [15] MatrixGenerics_1.20.0 matrixStats_1.5.0
## [17] AnVIL_1.20.0 AnVILBase_1.2.0
## [19] dplyr_1.1.4 BiocStyle_2.36.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_2.0.0 magrittr_2.0.3
## [3] magick_2.8.6 GenomicFeatures_1.60.0
## [5] farver_2.1.2 rmarkdown_2.29
## [7] BiocIO_1.18.0 vctrs_0.6.5
## [9] memoise_2.0.1 Rsamtools_2.24.0
## [11] RCurl_1.98-1.17 tinytex_0.57
## [13] rstatix_0.7.2 htmltools_0.5.8.1
## [15] S4Arrays_1.8.0 BiocBaseUtils_1.10.0
## [17] lambda.r_1.2.4 curl_6.2.2
## [19] broom_1.0.8 Formula_1.2-5
## [21] SparseArray_1.8.0 sass_0.4.10
## [23] bslib_0.9.0 htmlwidgets_1.6.4
## [25] httr2_1.1.2 zoo_1.8-14
## [27] futile.options_1.0.1 cachem_1.1.0
## [29] commonmark_1.9.5 GenomicAlignments_1.44.0
## [31] mime_0.13 lifecycle_1.0.4
## [33] pkgconfig_2.0.3 Matrix_1.7-3
## [35] R6_2.6.1 fastmap_1.2.0
## [37] GenomeInfoDbData_1.2.14 shiny_1.10.0
## [39] digest_0.6.37 colorspace_2.1-1
## [41] RaggedExperiment_1.32.0 AnnotationDbi_1.70.0
## [43] ps_1.9.1 RSQLite_2.3.9
## [45] labeling_0.4.3 filelock_1.0.3
## [47] RTCGAToolbox_2.38.0 km.ci_0.5-6
## [49] RJSONIO_2.0.0 httr_1.4.7
## [51] abind_1.4-8 compiler_4.5.0
## [53] bit64_4.6.0-1 withr_3.0.2
## [55] backports_1.5.0 BiocParallel_1.42.0
## [57] carData_3.0-5 DBI_1.2.3
## [59] ggsignif_0.6.4 rappdirs_0.3.3
## [61] DelayedArray_0.34.0 rjson_0.2.23
## [63] tools_4.5.0 chromote_0.5.0
## [65] httpuv_1.6.15 glue_1.8.0
## [67] restfulr_0.0.15 promises_1.3.2
## [69] gridtext_0.1.5 grid_4.5.0
## [71] gtable_0.3.6 KMsurv_0.1-5
## [73] tzdb_0.5.0 tidyr_1.3.1
## [75] websocket_1.4.4 data.table_1.17.0
## [77] hms_1.1.3 car_3.1-3
## [79] xml2_1.3.8 utf8_1.2.4
## [81] XVector_0.48.0 markdown_2.0
## [83] pillar_1.10.2 stringr_1.5.1
## [85] later_1.4.2 splines_4.5.0
## [87] ggtext_0.1.2 BiocFileCache_2.16.0
## [89] lattice_0.22-7 rtracklayer_1.68.0
## [91] bit_4.6.0 tidyselect_1.2.1
## [93] Biostrings_2.76.0 miniUI_0.1.1.1
## [95] knitr_1.50 gridExtra_2.3
## [97] litedown_0.7 bookdown_0.43
## [99] futile.logger_1.4.3 xfun_0.52
## [101] DT_0.33 stringi_1.8.7
## [103] UCSC.utils_1.4.0 yaml_2.3.10
## [105] evaluate_1.0.3 codetools_0.2-20
## [107] tibble_3.2.1 BiocManager_1.30.25
## [109] cli_3.6.4 xtable_1.8-4
## [111] munsell_0.5.1 processx_3.8.6
## [113] jquerylib_0.1.4 survMisc_0.5.6
## [115] Rcpp_1.0.14 GenomicDataCommons_1.32.0
## [117] dbplyr_2.5.0 png_0.1-8
## [119] XML_3.99-0.18 rapiclient_0.1.8
## [121] parallel_4.5.0 TCGAutils_1.28.0
## [123] readr_2.1.5 blob_1.2.4
## [125] bitops_1.0-9 scales_1.3.0
## [127] purrr_1.0.4 crayon_1.5.3
## [129] rlang_1.1.6 KEGGREST_1.48.0
## [131] rvest_1.0.4 formatR_1.14
References
Ramos, Marcel, Ludwig Geistlinger, Sehyun Oh, Lucas Schiffer, Rimsha Azhar, Hanish Kodali, Ino de Bruijn, et al. 2020. “Multiomic Integration of Public Oncology Databases in Bioconductor.” JCO Clinical Cancer Informatics 1 (4): 958–71. https://doi.org/10.1200/CCI.19.00119.
Ramos, Marcel, Lucas Schiffer, Angela Re, Rimsha Azhar, Azfar Basunia, Carmen Rodriguez, Tiffany Chan, et al. 2017. “Software for the Integration of Multiomics Experiments in Bioconductor.” Cancer Research 77 (21): e39–e42. https://doi.org/10.1158/0008-5472.CAN-17-0344.