(original) (raw)
## ----style, echo = FALSE, results = 'asis'------------------------------------ BiocStyle::markdown() ## ----env, message = FALSE, warning = FALSE, echo = FALSE---------------------- library("vsclust") require(clusterProfiler) require(matrixStats) ## ----eval=FALSE--------------------------------------------------------------- # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # BiocManager::install("vsclust") ## ----------------------------------------------------------------------------- #### Input parameters, only read when now parameter file was provided ## All principal parameters for running VSClust can be defined as in the ## shinyapp at computproteomics.bmb.sdu.dk/Apps/VSClust # name of study Experiment <- "ProtExample" # Number of replicates/sample per different experimental condition (sample # type) NumReps <- 3 # Number of different experimental conditions (e.g. time points or sample # types) NumCond <- 4 # Paired or unpaired statistical tests when carrying out LIMMA for # statistical testing isPaired <- FALSE # Number of threads to accelerate the calculation (use 1 in doubt) cores <- 1 # If 0 (default), then automatically estimate the cluster number for the # vsclust # run from the Minimum Centroid Distance PreSetNumClustVSClust <- 0 # If 0 (default), then automatically estimate the cluster number for the # original fuzzy c-means from the Minimum Centroid Distance PreSetNumClustStand <- 0 # max. number of clusters when estimating the number of clusters. Higher # numbers can drastically extend the computation time. maxClust <- 10 ## ----fig.width = 12----------------------------------------------------------- data(protein_expressions) dat <- protein_expressions #### running statistical analysis and estimation of individual variances statOut <- PrepareForVSClust(dat, NumReps, NumCond, isPaired, TRUE) dat <- statOut$dat Sds <- dat[,ncol(dat)] cat(paste("Features:",nrow(dat),"\nMissing values:", sum(is.na(dat)),"\nMedian standard deviations:", round(median(Sds,na.rm=TRUE),digits=3))) ## Write output into file write.csv(statOut$statFileOut, paste("",Experiment,"statFileOut.csv",sep="")) ## ----fig.width = 12----------------------------------------------------------- #### Estimate number of clusters with maxClust as maximum number clusters #### to run the estimation with ClustInd <- estimClustNum(dat, maxClust=maxClust, scaling="standardize", cores=cores) #### Use estimate cluster number or use own if (PreSetNumClustVSClust == 0) PreSetNumClustVSClust <- optimalClustNum(ClustInd) if (PreSetNumClustStand == 0) PreSetNumClustStand <- optimalClustNum(ClustInd, method="FCM") #### Visualize estimClust.plot(ClustInd) ## ----------------------------------------------------------------------------- #### Run clustering (VSClust and standard fcm clustering ClustOut <- runClustWrapper(dat, PreSetNumClustVSClust, NULL, VSClust=TRUE, scaling="standardize", cores=cores) Bestcl <- ClustOut$Bestcl VSClust_cl <- Bestcl #ClustOut$p ## Write clustering results (VSClust) write.csv(data.frame(cluster=Bestcl$cluster, ClustOut$outFileClust, isClusterMember=rowMaxs(Bestcl$membership)>0.5, maxMembership=rowMaxs(Bestcl$membership), Bestcl$membership), paste(Experiment, "FCMVarMResults", Sys.Date(), ".csv", sep="")) ## Write coordinates of cluster centroids write.csv(Bestcl$centers, paste(Experiment, "FCMVarMResultsCentroids", Sys.Date(), ".csv", sep="")) ## ----------------------------------------------------------------------------- ClustOut <- runClustWrapper(dat, PreSetNumClustStand, NULL, VSClust=FALSE, scaling="standardize", cores=cores) Bestcl <- ClustOut$Bestcl ## Write clustering results (standard fcm) write.csv(data.frame(cluster=Bestcl$cluster, ClustOut$outFileClust, isClusterMember=rowMaxs(Bestcl$membership)>0.5, maxMembership=rowMaxs(Bestcl$membership), Bestcl$membership), paste(Experiment, "FCMResults", Sys.Date(), ".csv", sep="")) ## Write coordinates of cluster centroids write.csv(Bestcl$centers, paste(Experiment, "FCMResultsCentroids", Sys.Date(), ".csv", sep="")) ## ----------------------------------------------------------------------------- sessionInfo()