coder.DeepLearningCodeConfig - Parameters to configure deep learning code generation that does not depend on
third-party libraries - MATLAB ([original](https://www.mathworks.com/help/coder/ref/coder.deeplearningcodeconfig.html)) ([raw](?raw))
Main Content
Parameters to configure deep learning code generation that does not depend on third-party libraries
Since R2021a
Description
The coder.DeepLearningCodeConfig
object contains the parameters that the codegen function uses to generate generic C or C++ code for deep neural networks.
Creation
Create an DeepLearningCodeConfig
configuration object by using thecoder.DeepLearningConfig function with target library set to'none'
.
Properties
LearnablesCompression
— Compression type
"none"
(default) | "bfloat16"
Compression type, specified as "none"
or"bfloat16"
. To enable learnables compression, use"bfloat16"
.
TargetLib
— Target library name
'none'
Name of target library, specified as a character vector.
Examples
Generate Code That Does Not Depends on Third-party Libraries for the ResNet-50 Network
Create an entry-point function resnet50
that uses theimagePretrainedNetwork
function to load thedlnetwork
object that contains the ResNet-50
network. For more information, see Code Generation for dlarray.
function out = resnet_predict(in)
dlIn = dlarray(in, 'SSCB'); persistent dlnet; if isempty(dlnet) dlnet = imagePretrainedNetwork('resnet50'); end
dlOut = predict(dlnet, dlIn); out = extractdata(dlOut);
Create a coder.config
configuration object for MEX code generation.
cfg = coder.config('mex');
Set the target language to C++.
Create a coder.DeepLearningCodeConfig
deep learning configuration object. Assign it to the DeepLearningConfig
property of thecfg
configuration object.
dlcfg = coder.DeepLearningConfig(TargetLibrary = 'none'); cfg.DeepLearningConfig = dlcfg;
Use the -config
option of the codegen function to specify the cfg
configuration object. The codegen function must determine the size, class, and complexity of MATLAB® function inputs. Use the -args
option to specify the size of the input to the entry-point function.
codegen -args {ones(224,224,3,'single')} -config cfg resnet_predict
The codegen
command places the generated files in thecodegen
folder. This folder contains the C++ code for the entry-point function resnet_predict.cpp
, the header, and the source files that contain the C++ class definitions for the neural network, weight, and bias files.
Version History
Introduced in R2021a
R2023a: Renamed from coder.DeepLearningConfigBase
coder.DeepLearningConfigBase
configuration object is now calledcoder.DeepLearningCodeConfig
. The behavior remains the same.